INGEGNERIA INDUSTRIALE (LB10)

(Brindisi - Università degli Studi)

Docente titolare Giuseppe Agostino

MELE

Insegnamento CHIMICA	Insegnamento CHIMICA	Anno di corso 1
----------------------	----------------------	-----------------

Settore disciplinare CHIM/07 GenCod A005380

Percorso PERCORSO COMUNE

Lingua ITALIANO

Corso di studi di riferimento INGEGNERIA INDUSTRIALE

Insegnamento in inglese CHEMISTRY

Tipo corso di studi Laurea **Sede** Brindisi

Crediti 9.0 **Periodo** Primo Semestre

Ripartizione oraria Ore Attività frontale: Tipo esame Orale

81.0

Per immatricolati nel 2019/2020 Valutazione Voto Finale

Erogato nel 2019/2020 Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

Il corso si articola in lezioni frontali integrate da esercitazioni numeriche finalizzate alla conoscenza, approfondimento e assimilazione dei fondamenti chimici delle tecnologie. I principali contenuti riguardano: struttura dell'atomo, legame chimico, formule, nomenclatura, legame chimico, proprietà della materia nei diversi stati di aggregazione, reazioni chimiche, soluzioni, termochimica ed elettrochimica.

PREREQUISITI

Corso di Chimica (Prerequisiti)

Struttura della Materia

- -conoscenza qualitativa della struttura di atomi e molecole.
- nozioni elementari sui costituenti dell'atomo e sulla tavola periodica degli elementi.
- distinzione tra composti formati da ioni e quelli costituiti da molecole e la conoscenza delle relative caratteristiche fisiche, in particolare dei composti più comuni esistenti in natura, quali l'acqua e i costituenti dell'atmosfera.

Simbologia chimica

Conoscenze di base sul significato delle formule e delle equazioni chimiche.

Stechiometria

(La stechiometria è quella branca della chimica che studia i rapporti quantitativi delle sostanze chimiche e delle reazioni chimiche)

- concetto di mole e devono essere note le sue applicazioni;
- capacità di svolgere semplici calcoli stechiometrici.

-

Chimica organica

Deve essere nota la struttura dei più semplici composti del carbonio.

Soluzioni

Deve essere nota la definizione di sistemi acido-base e di pH.

Ossido-riduzione

Deve essere posseduto il concetto di ossidazione e di

riduzione. Si assumono nozioni elementari sulle reazioni di combustione

OBIETTIVI FORMATIVI

Alla fine del corso lo studente dovrebbe:

- *saper utilizzare la tavola periodica degli elementi per ricavare informazioni di natura chimica e chimico fisica in diverse categorie di sostanze.
- *conoscere il concetto di valenza degli atomi, determinare della formula molecolare delle principali classi di composti e la loro nomenclatura.
- *saper distinguere, rappresentare e descrivere i principali tipi di legame chimico nelle varie classi di materiali.
- *saper bilanciare reazioni chimiche: acido-base, combustione, ossido-riduzioni; nonché, saper eseguire correttamente calcoli stechiometrici.
- *Illustrare le caratteristiche dei materiali nei diversi stati di aggregazione.
- *Conoscere gli aspetti fondamentali e le implicazioni in campo tecnologico delle trasformazioni chimiche sia da un punto di vista cinetico sia da un punto di vista energetico.

METODI DIDATTICI

Lezioni frontali integrate con esercitazioni numeriche erogabili in aula o per via telematica sulla piattaforma "Microsoft Teams" (dal 15/03/2020)

MODALITA' D'ESAME

L'esame consiste in una prova scritta svolta contestualmente alla prova orale per via telematica tramite la piattaforma "Microsoft Teams" (dal 15/03/2020)

PROGRAMMA ESTESO

Programma del corso

Materia ed energia; stati della materia; simboli degli atomi, formule chimiche; peso atomico, peso molecolare; concetto di mole. Struttura dell'atomo. Modelli atomici. Orbitali atomici s,p,d,f, configurazione elettronica degli elementi ("aufbau"). Tabella periodica e proprietà periodiche. Nomenclatura chimica, formule chimiche. (8 ore)

Il legame chimico

Legame ionico, legame covalente. Formule di struttura di Lewis. Legami semplici e multipli. Ibridizzazione. Proprietà delle molecole. Forze di legame. Legame a ponte di idrogeno. I Metalli. Legame metallico. Conduttori, semiconduttori e isolanti. La teoria degli orbitali molecolari. (8 ore)

Reazioni chimiche

Equazioni chimiche; reazioni in soluzione acquosa; reazioni acido-base e di ossido-riduzione; bilanciamento delle reazioni; calcoli stechiometrici. (6 ore)

Stato solido

Solidi cristallini e amorfi, cristalli ionici e covalenti. Struttura dei metalli. (2 ore)

Stato gassoso e stato liquido

Stato gassoso: leggi dei gas ideali, miscele gassose. Leggi di Dalton. Dissociazione gassosa. Teoria cinetica dei gas.. Temperatura critica. Liquefazione dei gas. Gas reali. Gas reali: equazione di Van der Waals. Proprietà dei liquidi: evaporazione, viscosità, tensione superficiale, tensione di vapore. Equilibrio solido-vapore, solido-liquido. Soluzioni. Modi di esprimere la concentrazione. Proprietà colligative: tensione di vapore, crioscopia ed ebullioscopia, osmosi e pressione osmotica. Equilibri di fasi: diagramma di stato dell'acqua, CO2 e zolfo. (8 ore)

Cinetica chimica

Velocità di reazione. Ordine di reazione. Fattori che influenzano la velocità di reazione. Equazioni cinetiche del 1° e 2° ordine. I catalizzatori. (4 ore)

Equilibrio chimico

Equilibrio in sistemi omogenei ed eterogenei. Legge dell'azione di massa: Kc, Kp, Kn. Influenza delle variabili intensive sull'equilibrio chimico. Principio di Le Chatelier. Teorie Acido-Base, elettroliti forti e deboli. Dissociazione elettrolitica e grado di dissociazione, pH e pOH; Ka, Kb e Kw. (5 ore)

Termochimica

Le varie forme di energia: lavoro, calore, energia interna. Principi della Termodinamica. Entalpia. Legge di Hess. Lavoro e calore., entropia, energia libera (4 ore).

Elettrochimica

Processi ossido-riduttivi. Conducibilità metallica ed elettrolitica. Celle galvaniche. Equazione di Nernst. Calcolo della F. E. M. Di una pila Elettrolisi. Legge di Faraday. Corrosione e passivazione dei metalli. (4 ore)

Esercitazioni

 Esercizi su configurazione elettronica degli atomi, calcolo su peso molecolare di alcune Molecole (4 ore)

Esercitazioni su configurazione elettronica degli atomi; Tabella periodica; calcolo del peso molare, calcolo

Delle moli.

• Reazioni Chimiche e loro bilanciamento (4 ore)

Esercizi sul bilanciamento delle reazioni acido-base, reazioni di combustione e reazioni redox

• Formule di struttura e legame chimico (4 ore)

Esempi di molecole con legame covalente e legame ionico. Esercizi su formule di struttura di alcune Molecole ed orbitali ibridi.

Esercizi su: leggi dei gas, calcolo della concentrazione di soluzioni, proprietà colligative. (5 ore)

• Equilibrio chimico e termochimica (4 ore)

Esercizi su calcolo della Kc, Kp di una reazione; calcolo del pH di una soluzione; calcolo dell'entalpia di reazione

■ Elettrochimica (4 ore)

Esercizi sull'applicazione dell'equazione di Nernst; calcolo della f.e.m. di una pila

Testi di riferimento:

[1] M. Schiavello – L. Palmisano, Fondamenti di Chimica, Casa Editrice Edises

[2] Nobile C. F., Mastrorilli P., La Chimica di Base con Esercizi, Casa Editrice Ambrosiana

TESTI DI RIFERIMENTO

Fondamenti di Chimica IV o V°/Ed. Schiavello - Palmisano. Casa Editrice: Edises LA CHIMICA DI BASE CON ESERCIZI - Nobile C. F., Mastrorilli P.. Editore: CEA - Casa Editrice Ambrosiana

