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BRIEF COURSE
DESCRIPTION

The course provides a modern introduction to data mining, which spans techniques, algorithms and
methodologies  for  discovering  structure,  patterns  and  relationships  in  data  sets  (typically,  large
ones) and making predictions. Applications of data mining are already happening all around us, and,
when they are done well,  sometimes they even go unnoticed.  For  instance,  how does the Google
web search work? How does Netflix recommend movies to its users? The principles of data mining
provide  answers  to  these  and  others  questions.  Data  mining  overlaps  the  fields  of  computer
science, statistical machine learning and data bases. The course aims at providing the students with
the knowldedge required to explore,  analyze and leverage available data in order to turn the data
into  valuable  and  actionable  information  for  a  company,  for  instance,  in  order  to  facilitate  a
decision-making  process.

Calculus. Probability theory. Linear Algebra. Programming skills.REQUIREMENTS
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Knowledge and understanding. The course describes methods and models for the analysis of large
amounts  of  data.  Students  must  have  a  solid  background  with  a  broad  spectrum  of  basic
knowledge  related  to  data  mining:

    •  the students must have the basic cognitive tools to think analytically, creatively, critically and in
an inquiring way, and have the abstraction and problem-solving skills needed to cope with complex
systems;
    •  they must have solid knowledge of data mining models and methodologies;
    •  they must be able to work on large data collections, including heterogeneous and produced at
high speed data,  in order to integrate them - in particular by knowing how to manage their  origin
and quality  -  and to carry out in-depth thematic  analyses,  drawing on this  knowledge to improve
the decision-making process.
Applying knowledge and understanding. After the course the student should be able to:

    •  describe and use the main data mining techniques;
    •  understand the differences among several algorithms solving the same problem and recognize
which one is better under different conditions;
    •  tackle new data mining problems by selecting the appropriate methods and justifying his/her
choices;
    •  tackle new data mining problems by designing suitable algorithms and evaluating the results;
    •   explain  experimental  results  to  people  outside  of  statistical  machine  learning  or  computer
science.
Making judgements.  Students must have the ability to process complex and/or fragmentary data
and  must  arrive  at  original  and  autonomous  ideas  and  judgments,  and  consistent  choices  in  the
context of their work, which are particularly delicate in the profession of data scientist. The course
promotes the development of independent judgment in the appropriate choice of technique/model
for  data  processing  and  the  critical  ability  to  interpret  the  goodness  of  the  results  of  the
models/methods  applied  to  the  datasets  under  examination.
Communication. It is essential that students are able to communicate with a varied and composite
audience,  not  culturally  homogeneous,  in  a  clear,  logical  and  effective  way,  using  the
methodological  tools  acquired  and  their  scientific  knowledge  and,  in  particular,  the  specialty
vocabulary. Students should be able to organize effective dissemination and study material through
the most common presentation tools, including computer-based ones, to communicate the results
of data analysis processes, for example by using visualization and reporting tools aimed at different
types of audiences.
Learning skills. Students must acquire the critical ability to relate, with originality and autonomy, to
the  typical  problems  of  data  mining  and,  in  general,  cultural  issues  related  to  other  similar  areas.
They should be able to develop and apply independently the knowledge and methods learnt with a
view to possible  continuation of  studies at  higher  (doctoral)  level  or  in  the broader  perspective of
cultural and professional self-improvement of lifelong learning. Therefore, students should be able
to  switch  to  exhibition  forms  other  than  the  source  texts  in  order  to  memorize,  summarize  for
themselves  and  for  others,  and  disseminate  scientific  knowledge.

COURSE AIMS
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The  course  aims  to  provide  students  with  advanced  tools  for  data  analysis,  through  which  to
extrapolate  relevant  information  from  large  datasets  and  guide  the  related  decision-making
processes.  The  course  consists  of  frontal  lessons  using  slides  made  available  to  students  via  the
UniSalento  e-learning  platform,  and  classroom  exercises.  The  frontal  lessons  are  aimed  at
improving  students'  knowledge  and  understanding  through  the  presentation  of  theories,  models
and  methods;  students  are  invited  to  participate  in  the  lesson  with  autonomy  of  judgement,  by
asking  questions  and  presenting  examples.  The  exercises  are  aimed  at  understanding  the
algorithms  and  models  presented.

TEACHING METHODOLOGY
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Software project and oral exam. During the exam the student is asked to illustrate theoretical topics
in  order  to  verify  his/her  knowledge  and  understanding  of  the  selected  topics.  The  student  must
demonstrate adequate knowledge and understanding of the issues presented or indicated, applying
in  a  relevant  manner  the  theories  and  conceptual  models  covered  by  the  study  programme.  The
oral  exam  is  evaluated  on  a  scale  from  18  to  30  points.  The  software  project  is  assigned  upon
request to the student, and must be mandatorily discussed into the same trial in which the oral test
is performed. The software project is evaluated on a scale from 18 to 30 points. The final grade is
given  by  the  average  of  the  grades  obtained,  and  the  exam  is  passed  if  the  grade  achieved  is  at
least  18.

The report on the assigned project must be structured as follows.

1. Introduction. The student must provide an accurate description of the assigned project, including
an  analysis  of  the  sequential  algorithm  that  solves  the  problem  addressed  in  the  project.  If  the
student  deems  it  important  for  understanding,  then  pseudo-code,  examples,  graphs,  figures,
application  instances  etc.  may  be  included;

2. Implementation. The software must be implemented using the C or, possibly, C++ programming
language (so as to use the data structures present in the C++ STL).  The code must necessarily be
appropriately commented. In the event that the student verifies the existence of multiple solution
strategies  for  the  same  assigned  problem,  an  implementation  can  be  provided  for  each  strategy,
discussing the advantages and disadvantages of each strategy. Note that the code does not have to
be  given  in  full  in  the  text  of  the  report,  as  the  project  code  -  source  and  Makefile  for  the  build
(alternatively CMake can be used) - must in any case be delivered separately. However, the report
may include some code snippets relating to the most critical and interesting parts.

3.  Debugging  and  testing.  It  is  recommended  to  debug  and  test  the  code  in  order  to  reasonably
verify the absence of bugs and the correctness of the algorithm in relation to the output produced.
The student is urged to design and test unit tests deemed suitable for assessing the goodness of
the code. The student is explicitly warned that the implementation of an incorrect solving strategy
and/or  the  presence  of  bugs  that  crash  the  application  at  runtime  will  result  in  failing  the  exam,
while  the  presence  of  bugs  that  affect  the  correctness  of  the  algorithm  will  result  in  a  penalty
relative  to  the  mark  that  will  be  awarded.

4.  Performance  and  scalability  analysis.  The  student  must  analyse  the  performance  of  the
implementation  developed  in  terms  of  execution  time  and  memory  occupation  if  necessary.  The
scalability  of  the  algorithm  as  the  problem  size  changes  must  be  assessed.

5.  Synthesis.  The  report  must  be  as  concise  as  possible,  but  without  detriment  to  clarity  of
presentation.

6. Project evaluation. The project will be assessed on a scale of 1 to 30 points. The grade will only
be determined at the end of the project discussion. The complexity of the problem assigned will be
taken  into  account  in  the  assessment;  students  dealing  with  simpler  problems  should  therefore
expect  less  leniency  in  the  assessment  than  students  dealing  with  more  difficult  problems.

Assessment will also take into account:

- Clarity and effectiveness of presentation;
- Technical skills and documentation of implementation;
- Critical thinking in evaluation and performance analysis;

ASSESSMENT TYPE
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-  Meaningfulness  of  results:  since  performance  is  the  main  purpose,  a  good  project  must  also
deliver  meaningful  performance.

7.  Plagiarism.  The  student  is  explicitly  warned  that  plagiarism  is  very  serious,  and  is  taken  very
seriously.  The  use  of  external  sources  of  any  kind  (internet,  books,  handouts,  previous  work  by
other  students  etc.)  is  only  allowed  for  marginal  contributions  in  the  project  (e.g.  for  the  initial
description  of  the  assigned  project),  and  each  individual  occurrence  must  be  explicitly  cited  and
reported in  the  report.  Violation  of  this  code of  conduct  will  not  be  tolerated in  any  way,  and will
result  in  the  immediate  cancellation  of  the  examination  and  the  referral  of  the  student  to  the
University  Disciplinary  Committee,  with  the  commencement  of  the  relevant  disciplinary
proceedings  in  accordance  with  the  provisions  of  Title  V  (DISCIPLINARY  PROCEDIMENTS  AND
SANCTIONS)  of  the University  Regulations for  Students (D.R.  672 of  5/12/2017,  which came into
force on 8/12/2017).

Office Hours
By appointment; contact the instructor by email or at the end of class meetings.

OTHER USEFUL INFORMATION
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Introduction to the course.

Introduction  to  the  Map-Reduce  parallel  programming  model.  Open-source  Hadoop
implementation.  Pros  and  cons  of  Hadoop  and  Map-Reduce.  Distributed  File  System.  Chunk
servers, Master node. Map Function. Sort and Shuffle. Reduce Function. Map Tasks. Reduce Tasks.
Word  counting.  Handling  failures.  Number  of  Map  and  Reduce  jobs.  Granularity  of  tasks  and
pipelining. Strugglers tasks: mitigating the problem by spawning backup tasks. Combiners. Partition
(hash) function. Additional examples of Map-Reduce: natural join, two-pass matrix multiply, single
pass matrix multiply. Cost measures for Map-Reduce algorithms.

Frequent  Pattern  Mining.  Discovery  of  association  rules.  Market-basket  model.  Examples  of
possible applications. Frequent itemsets. Support of an itemset. Association rules. Confidence and
Interest.  Association  rules  with  highly  positive  or  negative  interest.  Mining  association  rules.
Maximal and closed frequent itemsets. Lattice of the itemsets. Naive approach to counting frequent
pairs. A-priori. Monotonicity. PCY. PCY refinements: multistage and multihash. Frequent itemsets in
2 passes: random sampling and choice of the threshold, SON, monotonicity, parallel SON parallelo
with  Map-Reduce  in  2  passes,  Toivonen  and  the  negative  border.  ECLAT.  DECLAT.  FPGrowth.
Sequence  mining.  Frequent  sequences.  Mining  frequent  sequences.  GSP.  SPADE.  PREFIXSPAN.

Streams. Uniform, 2-universal and pairwise independent hash function. Streaming: turnstile, strict
turnstile  and  cash  register  models.  Frequency  estimation.  Sketches.  Count-Sketch.  Count-Min.
Comparing  Count-Sketch  and  Count-Min.  Frequent  items.  Phi-frequent  items.  The  majority
problem.  Boyer-Moore.  Misra-Gries.  Frequent.  Space  Saving.  Space  Saving  properties.  Comparing
Frequent and Space Saving.  Sampling from a Data Stream: Sampling a fixed proportion.  Sampling
from  a  Data  Stream:  Sampling  a  fixed-size  sample  (Reserved  Sampling).  Queries  over  a  sliding
windows: counting the number of bits equal to 1 with DGIM. Filtering data streams: Bloom FIlters.
Counting distinct elements: Flajolet-Martin. Estimating moments with AMS.

Scene  completion  problem.  Near  neighbors  in  high  dimensionality  spaces.  Document  similarity.
Pairs of candidate documents. Near neighbor search. Jaccard similarity and distance. Shingling: how
to convert  documents,  emails  etc  in  sets.  k-shingles.  Compression through hashing of  k-shingles.
Min-Hashing: converting big sets in short signatures preserving the similarity. Similarity and Jaccard
distance  for  boolean  vectors.  Boolean  matrices.  Min-hash  signatures.  Implementation.  Locality-
Sensitive  Hashing:  determining  pairs  of  candidate  documents.  Matrix  partitioning  in  b  bands  of  r
rows:  analysis  of  accuracy  with  regard  to  false  positives  and  false  negatives.

Link  analysis.  PageRank.  Dead  ends.  Spider  traps.  Flow  formulation.  Matrix  formulation.  Random
walk  interpretation.  Stationary  distribution  of  a  Discrete-Time  Markov  Chain.  Perron-Frobenius
Theorem. Google matrix and teleportation. Sparse matrix encoding. Block update algorithm. Topic-
specific  PageRank.  Matrix  formulation.  Topic  vector.  Web  Spam.  Term  spam.  Spam  farms.
PageRank  value  obtained  through  a  Spam  Farm.  TrustRank.  Trust  propagation.  Spam  Mass
estimation.

Recommender  systems.  Recommendations.  The  long  tail  phenomenon.  Content-based  systems.
Utility  function  and  matrix.  Ratings.  Extrapolation  of  ratings  (utilities).  Item  profiles.  User  profiles.
Collaborative  filtering.  k-NN.  Similarity  metrics.  User-user  and  item-item  collaborative  filtering.
Evaluation of systems. Error metrics. RMSE, precision, rank correlation. Complexity of collaborative
filtering.  The  Netflix  challenge.  Bellkor  recommender  system.  Modeling  local  and  global  effects.
Learning  the  optimal  weights:  optimization  problem  and  gradient  descent.  Latent  factor  models.
SVD  decomposition.  Learning  the  P  and  Q  matrices.  Preventing  overfitting:  regularization.
Stochastic  Gradient  Descent.  Biases  and  interactions.  Temporal  biases  and  factors.

FULL SYLLABUS
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Artificial Intelligence. Different definitions over time: thinking like a human, acting like humans and
the Turing test, thinking rationally, acting rationally. Rational agents, decisions and behaviour. Game
playing:  chess,  go,  etc.  The human intelligence.  Human versus artificial  intelligence.  Benefits of  AI.
Ai,  machine  learning  and  deep  learning.  AI  applications  and  use-cases.  Human  learning  process.
Features,  instances,  labels,  classes,  classification  function.  Training  set,  validation  and  test  set.
Supervised learning:  regression,  binary and multiclass classification.  Unsupervised learning.  Semi-
supervised  and  weakly-supervised  learning.  Reinforcement  learning:  agent,  environment  and  its
state that changes depending on the agent's actions, reward and penalty. Loss functions. Zero-one
and squared loss functions. Bias and variance. Deep Learning. Machine Learning vs Deep Learning.
Limitations of Deep Learning. Artificial versus biological neural networks. AI Myths.

The clustering problem. Curse of dimensionality. Clustering in euclidean and non euclidean spaces.
Distances.  Hierarchical  clustering:  agglomerative  and  divisive  algorithms.  Clustering  by  point
assignment.  Centroid  and  clustroid.  K-means  and  K-means++.  Choosing  k:  elbow  criterion.  BFR.
Discard,  Compression  and  Retained  sets.  Summarizing  points.  Mahalanobis  distance.  CURE.
Representative  points  and  their  choice.  Input  space  and  feature  space.  Kernel  methods.  Kernel
matrix.  Linear kernel.  Kernel trick.  Kernel operations in feature space. Represenative clustering: K-
means and Kernel K-means. Expectation-Maximization clustering. Hierarchical clustering. Density-
based clustering. DBSCAN. Clustering validation: external, internal and relative measures.

Machine  learning.  Supervised  and unsupervised  approaches.  Numerical  and  categorical  attributes.
Categorical attributes: nominal and ordinal attributes. Probabilistic classifiers. Parametric approach:
Bayes  and  naive  Bayes  classifiers.  Data  centering.  Non  parametric  approach  (density  based):  K-
nearest neighbors classifier. Decision Trees. Hyperplans. Split points. Data partion and purity. Split
Point Evaluation Measures: entropy, split entropy, information gain, Gini index, CART. Evaluation of
numerical and categorical split points. Support Vector machines. Hyperplanes. Support Vectors and
Margins. Linear and Separable Case. Soft Margin SVM: Linear and Nonseparable Case. Kernel SVM:
Nonlinear  Case.  SVM  Training  Algorithms.  Multiclass  SVM.  Assessing  the  performances  of  a
classifier.  Evaluation  metrics.  ROC  curve  and  AUC.  K-fold  cross-validation.  Bootstrapping.
Confidence intervals. Paired t-Test. Bias and variance decomposition. Ensemble classifiers. Bagging.
Random Forest. Boosting. Stacking.

Introduction  to  neural  networks.  History.  The  Biological  Inspiration.  Learning  in  Biological  vs
Artificial Networks. An Alternative View: The Computational Graph Extension of Traditional Machine
Learning.  Machine  Learning  versus  Deep  Learning.  Single  Layer  Networks:  the  Perceptron.  Bias
neurons.  Training  a  Perceptron.  Perceptron  vs  Linear  SVMs.  Activation  and  Loss  Functions.
Multilayer Neural Networks. Reasons for nonlinearity of hidden layers. Role of Hidden Layers. The
Feature  Engineering  View  of  Hidden  Layers.  Multilayer  Networks  as  Computational  Graphs.
Connecting Machine Learning with  Shallow Neural  Networks:  Perceptron versus Linear  SVM,  RBF
Network  versus  kernel  SVM.  Neural  models  for  linear  regression,  classification  and  the  Fisher
discriminant.  Widrow-Hoff  learning.  Neural  model  for  linear  regression.  Comparison  of  Widrow-
Hoff  with  Perceptron  and  SVM.  Connections  with  Fisher  Discriminant.  Neural  Models  for  Logistic
Regression.  The  Softmax  Activation  Function  and  Multinomial  Logistic  Regression.  The
Autoencoder  for  Unsupervised  Representation  Learning.  Singular  Value  Decomposition  with
Autoencoders.  Row-Index  to  Row-Value  Autoencoders:  Incomplete  Matrix  Factorization  for
Recommender  Systems.  Model  Generalization  and  the  Bias-Variance  Trade-Off  in  the  context  of
neural  networks.
Penalty-Based  Regularization.  Economy  in  Parameters.  Soft  vs  hard  economy.  L1  vs  L2
regularization.  L2  regularization  and  noise  injection.  Weight  sharing.  Dropout.  Feature  co-
adaptation. Why feature co-adaptation is bad. Dropout training. Dropout testing: repeated sampling
and  geometric  averaging  vs  weight  scaling  inference  rule.  Why  dropout  helps.  Connection  of
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Mining of Massive Datasets
J. Leskovec, A. Rajaraman and J. Ullman
Freely availableonline: http://www.mmds.org

Data Mining and Analysis
M. J. Zaki and W. Meira
Freely available online: http://dataminingbook.info

Neural Networks and Deep Learning
Charu C. Aggarwal
Springer

REFERENCE TEXT BOOKS
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