AEROSPACE ENGINEERING (LM52)

(Brindisi - Università degli Studi)

Teaching AERODYNAMICS (MOD.1) C.I.		Teaching in italian AERODYNAMICS (MOD.1) C.I. Teaching AERODYNAMICS (MOD.1) C.I.	Course year 1 Language INGLESE	
		Owner professor Giuseppe PASCAZIO		Reference course AEROSPACE ENGINEERING
		Course type Laurea Magistrale	Location Brindisi	
		Credits 6.0	Semester Secondo-Semestre	
		Teaching hours Ore-Attivita-frontale: 54.0	Exam type Orale	
		For enrolled in 2020/2021	Assessment	
		Taught in 2020/2021	Course timetable https://easyroom.unisalento.it/Orario	
BRIEF COURSE DESCRIPTION	formulation of th quasi-one-dimen- shocks, in order studied taking int airfoils. After rec	e fundamental equations of gas dynamics sional gas dynamics is studied, analyzing to characterize the flow through nozzles. to account oblique shocks and Prandtl-Mey calling the concepts of classical aerodyna mamic problems is addressed employing the	ynamics and aerodynamics. Starting from the in vector notation, the one-dimensional and g the isentropic conditions and the normal Two-dimensional supersonic flows are then er expansion waves and finally the flow past amics, the approximate solution to several e potential flow assumption. Finally, the study	
REQUIREMENTS	Basic knowledge	of Calculus (derivatives and integrals), Appli	ed Thermodynamics and Fluid Dynamics	
COURSE AIMS	At the end of the	course the student must:		

Know the fundamental equations of gas dynamics in vector notation and their simplification in the simplified case of: one-dimensional flow; quasi-one-dimensional flow; multi-dimensional irrotational flow;
Know how to characterize and calculate the properties of the flow through a normal shock, an oblique shock, an expansion wave

• Know how to evaluate the force coefficients in the case of airfoils in a supersonic flow

• Know the fundamental aspects of the flow past an airfoil and past a finite wing, along with the evaluation of the force coefficients.

TEACHING METHODOLOGY

Lectures supported by the use of a computer and a projector

ASSESSMENT TYPE	Written examination for the application part and oral test. In the written test (2 hours) the student is requested to solve two/three exercises concerning the arguments of the course; the test aims to verify the capability of the student to select the appropriate solution approach. In the oral test the student has to discuss the theoretical arguments of the course, that the student must demonstrate to know and to be able to explain.
FULL SYLLABUS	 Basic concepts of fluid dynamics. Fluid properties; flow kinematics; Reynolds' transport theorem; conservation equations in integral and differential form; Bernoulli's equation; Crocco's theorem; boundary layer theory (7 hours). Introduction to the basic concepts of aerodynamics (3 hours). One-dimensional gas dynamics. Quesi one-dimensional flow equations: compressibility; speed of sound; quasi one-dimensional steady flow; isentropic flow; stagnation and critical conditions; area-Mach number relation; mass flow rate; normal shocks; convergent nozzle; convergent-divergent nozzle (13 hours). Two-dimensional gas dynamics. Oblique shocks and Prandtl-Meyer expansion waves; Mach angle; oblique shock equations;Mach diagram; shock polar; shock reflection from a solid boundary; pressure-deflection diagrams; intersection of shocks of opposite families and of the same family; detached shock in front of a blunt body; isentropic expansions and compressions; Prandtl-Meyer function; reflection from a free boundary; over-expanded and under-expanded nozzle flow; Shock-Expansion Theory, Thin-Airfoil Theory (13 hours). Linearized potential flow. Equations of the velocity potential; linear equation of the perturbed velocity potential; linearized two-dimensional subsonic flow; compressibility correction; critical Mach number (6 hours). Aerodynamics. Kutta condition; Kelvin's and Helmholtz's theorems; two-dimensional potential flows. Flow past airfoils of arbitrary shape and evaluation of the force coefficients; finite wing theory and Prandtl's Classical Lifting-Line Theory; applications (13 hours).
REFERENCE TEXT BOOKS	John D. Anderson Jr., "Modern compressible flow: With historical perspective", Mc-Graw-Hill, Int. Ed. 1990. John D. Anderson Jr., "Fundamental of Aerodynamics", Mc-Graw-Hill, 5th Ed. 2010.

