COASTAL AND MARINE BIOLOGY AND ECOLOGY (LM51)

(Lecce - Università degli Studi)

Teaching MATHEMATICAL **MODELLING IN ECOLOGY**

GenCod A006033

Owner professor SERENA ARIMA

Teaching in italian MATHEMATICAL MODELLING IN ECOLOGY

Teaching MATHEMATICAL MODELLING Language INGLESE

IN ECOLOGY

SSD code SECS-S/02

Reference course COASTAL AND MARINE BIOLOGY AND ECOLOGY

Course type Laurea Magistrale

Teaching hours Ore-Attivita-frontale:

Credits 6.0

For enrolled in 2020/2021

Taught in 2020/2021

Course year 1

Curriculum Curriculum E-Biodiversity

and Ecosystem Sciences

Location Lecce

Semester Secondo-Semestre

Exam type Orale

Assessment Voto-Finale

Course timetable

https://easyroom.unisalento.it/Orario

BRIEF COURSE DESCRIPTION

The main goal of the course is to provide basic tools for analyzing ecological data with focus on probabilistic and mathematical modeling issues. In particular the course deals with:

- 1) Introduction to statistics and probability;
- 2) Association and entropy measures;
- 3) Probability and statistical inference for Normal and not Normal populations;
- 4) Linear models and non linear models.

During the course, the statistical software R will be illustrated and the students will be able to elaborate their data using it.

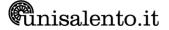
REQUIREMENTS	Basic concepts of mathematics and statistics.
COURSE AIMS	The course aims at providing basic methodologies for analyzing ecological data and modeling their intrinsic variability.
TEACHING METHODOLOGY	Slides, exercises provided on the web page. Practical exercises with the statistical software R.

ASSESSMENT TYPE

Written exam with R.

FULL SYLLABUS

- 1. Introduction: why analyzing data in ecology?
- 2. Exploratory data analysis and graphics
- 3. Deterministic functions for ecological modelling
- 4. Probability and stochastic distribution of ecological modeling
- 5. Stochastic simulation and power analysis
- 6. Statistical inference
- 7. Linear regression model and generalized linear models
- 8. Non linear models
- 9. Modelling variance
- 10. Dynamic models


During the course, the statistical software R will be illustrated and the students will be able to elaborate their data using it.

REFERENCE TEXT BOOKS

B. Bolker (2007) Ecological models and Data with R, PRINCETON UNIVERSITY PRESS.

A. Zuur, E.N. Ieno, G.M. Smith (2007) Analyzing ecological data, Springer Ed.

Interesing web book: http://web.stanford.edu/class/bios221/book/introduction.html

