SCIENZE AMBIENTALI (LM60)

(Lecce - Università degli Studi)

Insegnamento ZOOLOGIA APPLICATA ALLA CONSERVAZIONE E GESTIONE DEI SISTEMI NATURALI

Insegnamento ZOOLOGIA APPLICATA Anno di corso 1 ALLA CONSERVAZIONE E GESTIONE DEI

Insegnamento in inglese ZOOLOGY APPLIED TO THE CONSERVATION AND Lingua ITALIANO

GenCod A003952

Docente titolare SERGIO ROSSI

Settore disciplinare BIO/05

Corso di studi di riferimento SCIENZE

AMBIENTALI

Tipo corso di studi Laurea Magistrale

Sede Lecce

Periodo Secondo Semestre

Percorso PERCORSO COMUNE

Crediti 6.0

Tipo esame Orale

Ripartizione oraria Ore Attività frontale: 52.0

Valutazione Voto Finale

Per immatricolati nel 2019/2020

Orario dell'insegnamento

Erogato nel 2019/2020

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

Zoologia applicata dará allo studente i mezzi per studiare la biodiversità, demografia e dinamica di popolazioni, relazione con fattori ambientali e studio dei cicli di vita di organismi animali. Si applicheranno questi strumenti a capire effetti sulle popolazioni animali di impatti indiretti(cambiamento climatico) o diretti (pesca, contaminazione, sfruttamento delle popolazioni animali, ecc.). Si studieranno pure le soluzioni applicate alla preservazione di queste popolazioni (regolazione della pesca, aree protette, restaurazione, ecc.).

PREREQUISITI

Basi di zoologia, ecologia, fondamenti di analisi dei sistemi ecologici

OBIETTIVI FORMATIVI

L'alunno dovrà saper fare una valutazione multicriteriale dei possibili impatti antropogenici diretti o indiretti, e fornire soluzioni. Si impareranno processi integrativi (bottom-up) per la valutazione dei servizi ecosistemici

METODI DIDATTICI

L'insegnamento è incentrato sull'utilizzo della biodiversità, life cycle, relazione con fattori ambientali e biomarcatori di diversi gruppi animali quale strumento di analisi delle condizioni ambientali in relazione ad impatti antropici.

Attraverso casi di studio, vengono forniti i criteri logici per una corretta pianificazione di programmi di monitoraggio sperimentale e le basi metodologiche per il campionamento in differenti contesti ambientali, e per l'ordinamento e analisi dei dati.

Si imparerà a gestire in modo basico un'area marina protetta, la sua biodiversità e gli interessi dei diversi collettivi (pesca, turismo, subacquei, ecc.).

MODALITA' D'ESAME

Il conseguimento dei crediti attribuiti all'insegnamento è ottenuto mediante una prova orale e una prova scritta (opzionale, per aumentare il voto) su un tema a scelta tra quelli offerti durante il corso, con votazione finale in trentesimi ed eventuale lode. Gli studenti possono prenotarsi per l'esame finale esclusivamente utilizzando le modalità previste dal sistema VOL

PROGRAMMA ESTESO

Programma:

La Biodiversità animale come strumento per l'analisi dell' impatto ambientale: la diversità alfa, beta e gamma. La scelta del livello di risoluzione tassonomica nella valutazione dei cambiamenti della struttura di comunità soggette a fattori di disturbo antropico.

La scelta di specie mobili e sessili come specie indicatrici. Studio della demografia con diverse metodiche. Metodologie di ecologia forestale applicati e adattati allo studio della distribuzione e della struttura e composizione di sospensivori bentonici. Studio di organismi bentonici e pelagici a larga scala.

Correlazione di variabili abiotiche e biotiche con misure di cambiamento della struttura di popolamenti animali in condizioni di impatto ambientale. Strumenti per capire l'impatto della qualità ambientale negli organismi: fattori fisici, chimici e biologici della colonna d'acqua. Crisi trofiche e impatto sulle popolazioni.

Strumenti per calcolare lo stress nelle popolazioni marine. Riproduzione, capacità di reclutamento e stato di salute delle popolazioni bentoniche. Calcolo delle variazioni di biomassa a differenti scale spaziali e confronto tra popolazioni disturbate e non disturbate. Studio di biomarcatori applicati alla fauna marina ai fini della conservazione dei sistemi naturali. Ecofisiologia applicata alla conservazione.

Cambiamenti climatici e globali. Effetto della temperatura e dell'acidificazione su animali bentonici e pelagici. Tropicalizzazione del Mediterraneo. Effetti dei cambiamenti climatici in *habitat* sensibili: coralligeno, *tropical and deep coral reefs* e zone polari. Altre fonti di impatto: eutrofizzazione, inquinamento luminoso, alterazioni del *soundscape* in mare, specie aliene, metaboliti algali ed alterazioni di reti trofiche, agenti patogeni.

Effetto della pesca industriale sugli stock ittici, sulle risorse rinnovabili e sulla struttura/complessità degli ecosistemi marini. Sfruttamento di organismi sospensivori bentonici (coralli preziosi, spugne e bivalvi). Gestione della piccola pesca professionale, interventi di mitigazione ambientale. *Ecosystem Services*: studio e categorizzazione. Strumenti per lapianificazone, il monitoraggio e la gestione delle Aree Marine Protette. Trapianti e strumenti di ristorazione sottomarina.

Il corso prevede esercitazioni pratiche mediante strumenti informatici, in laboratorio e sul litorale costiero durante le quali saranno ripercorse e discusse le tappe di specifici casi di studio: identificazione della problematica, definizione del disegno sperimentale e del metodo di campionamento, organizzazione e analisi dei dati e interpretazione degli stessi.

TESTI DI RIFERIMENTO

An introduction to Marine Ecology. (1999) Barnes, RSK & Hughes, RN. BlackwellScience, Ltd., Oxford, England.

Marine Ecology: Processes, Systems, and Impacts (2011). Kaiser MJ et al. OUP Oxford.

Marine Protected Areas (Ecology, Biodiversity and Conservation). (2014) Joachim Claudet. CambridgeUniversity Press

The Mediterranean Sea: Its History and Present Challenges. Fauna. (2014) Goffredo S & Dubinsky Z (Eds.). Springer, Germany

