MATEMATICA (LB04)
(Lecce - Università degli Studi)

Insegnamento GEOMETRIA IV

GenCod A002751
Docente titolare Alessandro MONTINARO

Insegnamento GEOMETRIA IV
Insegnamento in inglese GEOMETRY IV
Lingua ITALIANO

Settore disciplinare MAT/03
Percorso PERCORSO COMUNE

Corso di studi di riferimento MATEMATICA
Tipo corso di studi Laurea
Sede Lecce

Crediti 9.0
Periodo Secondo Semestre

Ripartizione oraria Ore Attività frontale:
Tipo esame Orale
63.0
Per immatricolati nel 2019/2020
Valutazione Voto Finale

Erogato nel 2020/2021
Orario dell’insegnamento
https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

ITALIAN
L’acquisizione di alcuni tra i più importanti concetti sia in ambito geometrico, quali gli spazi topologici, sia in ambito algebrico, ovvero la Forma Canonica di Jordan, che hanno notevoli applicazioni in diverse aree della matematica.

ENGLISH
The acquisition of some of the most important topics both in the geometric and algebric fields, such as topological spaces, and the Jordan Canonical Form, which have significant applications in different areas of mathematics.

PREREQUISITI

ITALIAN
Aver superato l’esame di Geometria III. Avere una buona conoscenza degli argomenti trattati ad Analisi I e a Geometria I e II.

ENGLISH
Having passed Geometry III. Having a good knowledge of the topics treated in Analysis I and Geometry I and II.
OBIETTIVI FORMATIVI

Conoscenze e comprensione. Possedere una buona di conoscenza dei contenuti di due importanti aree della matematica: una di tipo geometrico, nell’ambito della topologia generale, e della Forma Canonica di Jordan che è una parte avanzata dell’Algebra Lineare.

Capacità di applicare conoscenze e comprensione. Saper riprodurre autonomamente, in maniera rigorosa i contenuti acquisiti nel corso. Saperli utilizzare nella risoluzione degli esercizi.

Autonomia di giudizio. Saper estrapolare e interpretare i dati ritenuti utili a determinare giudizi autonomi riguardanti sia problemi strettamente collegati alle tematiche sviluppate nel corso, sia problemi non necessariamente di ambito matematico.

Abilità comunicative. Saper comunicare problemi, soluzioni e dimostrazioni inerenti ad argomenti di Topologia Generale e relativi alla Forma Canonica di Jordan a interlocutori specialisti e non specialisti.

Capacità di apprendimento. Saper collegare, mettere insieme, sintetizzare argomenti provenienti da diverse aree della matematica e apparentemente diversi. Saper sfruttare le conoscenze acquisite nel corso per risolvere problemi in cui la topologia o la Forma Canonica di Jordan rappresenta un utile strumento.

ENGLISH

Knowledge and understanding. To possess a good knowledge of the contents of two important areas of mathematics: General Topology and The Jordan Canonical Form, which is an advanced part of Linear Algebra.

Applying knowledge and understanding. To be able to reproduce the contents acquired during the course in a rigorous manner. Know how to use them for the exercise resolutions.

Making Judgments. To be able to extrapolate and interpret the useful data deemed to make judgments concerning problems closely related to the course contents, and to problems not necessarily of a mathematical scope.

Communication. Knowing how to communicate problems, solutions and demonstrations related to General Topology and to the Jordan Canonical Form to specialists and non-specialist interlocutors.

Lifelong learning skills. Knowing how to connect, put together, summarize topics from different areas of mathematics. To be able to exploit the knowledge acquired in the course to solve problems in which the General Topology the Jordan Canonical Form represent useful tools.

METODI DIDATTICI

ITALIAN

Lezioni frontali ed esercitazioni.

ENGLISH

Lectures and exercises.
MODALITÀ D'ESAME

ITALIAN

L'esame consiste di una prova orale, la cui durata è di circa 60', consiste di almeno tre domande inerenti a parti del corso diverse. Viene, inoltre, richiesta la risoluzione di un esercizio. La prova orale ha come obiettivo quello di verificare il grado di comprensione dei contenuti del corso, sia la capacità da parte dello studente di saperli collegare tra loro in modo rigoroso. Lo studente supera l'esame se consegue un voto maggiore o uguale a 18/30.

Gli studenti italiani dovranno prenotarsi per sostenere l'esame finale utilizzando esclusivamente le modalità online previste dal sistema VOL.

Gli studenti ERASMUS dovranno effettuare la prenotazione dell'esame via mail all'indirizzo: alessandro.montinaro@unisalento.it almeno un giorno prima della data dell'esame. Nel caso di superamento della prova, la verbalizzazione del voto sarà effettuata mediante un verbale cartaceo.

ENGLISH

The exam consists of a verbal test, whose duration is about 60', consists of at least three questions related to different parts of the course contents. The resolution of an exercise is also requested. The verbal test aims to verify the knowledge and understanding and applying knowledge and understanding of the course contents. Particular attention is devoted to the ability of the student to know how to connect the course contents in a rigorous manner. The student passes the exam if he/she obtains a grade greater than or equal to 18/30.

Italian students must register to take the final exam using only the online methods provided by the VOL system.

ERASMUS students must register the exam via email at: alessandro.montinaro@unisalento.it at least one day before the exam date. In the case of passing the exam, the grade will be recorded using an appropriate written report.

APPELLI D'ESAME

Calendario Appelli d'Esame a.a. 2020/2021

Sessione Invernale
Sessione Estiva
Sessione Autunnale
Sessione Straordinaria
Appelli per Studenti Fuori Corso

ALTRE INFORMAZIONI UTILI

ITALIAN

Avere una forte motivazione e amore per la matematica.

ENGLISH

Having a strong motivation and love for math.
ITALIAN

TOPOLOGIA GENERALE

Assiomi di separazione e di numerabilità. Spazi di Hausdorff (T_2). Assiomi di numerabilità, spazi separabili, spazi di Lindelöf.

FORMA CANONICA DI JORDAN

Endomorfismi triangolabili. Endomorfismi triangolabili e relativa caratterizzazione attraverso la decomponibilità del polinomio caratteristico.

ENGLISH

GENERAL TOPOLOGY

Topological spaces. Topological spaces: the trivial topology, the discrete topology, the three open topology, the Euclidean topology of R, the upper topology, the left half-open interval topology, the Euclidean topology of R^n. Finer and coarser topologies. Closed sets, cofinite topology, algebraic varieties and Zariski topology. Topological closure, interior of a set. Neighbourhood of a point, local basis of neighbourhoods, topological bases and sub-bases. Adherent points, accumulation points.

Continuous mpas. Continuity at a point. Equivalence between the definitions of continuity at a point in the classical sense in the sense of the Euclidean topology of \mathbb{R}^n. Continuous mpas between topological spaces and relative characterization. Open mpas and relative characterization. Continuous and open mpas. Homeomorphism and relative characterization. Direct image topology. Inverse image topology.

Axioms of separation and numerability. Hausdorff spaces (T_2). Countability axioms, separable spaces, Lindelöf spaces.

Connectedness. Connected topological spaces. Connectedness in the Euclidean space \mathbb{R}^n: the intervals are the unique connected subsets of \mathbb{R}; Polygonally path-connected subsets of \mathbb{R}^n, equivalence of connectedness types in the open set case. Convex sets. Connected spaces and continuous maps. Path-Connectedness. Connected components. Totally disconnected topological spaces.

Compactness. Compact topological spaces. The Wallace's theorem, compactness and topological closure. Compact spaces and continuous maps. Product of compact topological spaces, The Tychonoff's theorem (statement only). Compact subspaces of \mathbb{R}^n: The Heine-Pincherle-Borel's theorem. The Bolzano-Weierstrass' Theorem: the unique compact subspaces of \mathbb{R}^n are the closed and bounded sets.

THE JORDAN CANONICAL FORM

Triangular endomorphisms. Triangular endomorphisms. Characterization of triangular endomorphism via the decomposability of the characteristic polynomial.

Minimum polynomial. The Caley-Hamilton's theorem. The Minimum polynomial of an endomorphism (resp. of a matrix). Theorems for the determination of the minimum polynomial.

TESTI DI RIFERIMENTO

Per la Topologia Generale:

- M. Manetti, Topologia, Springer-Verlag, Italia, Milano (2014)

Per la Forma Canonica di Jordan: