INGEGNERIA INDUSTRIALE (LB09)

(Lecce - Università degli Studi)

Insegnamento MECCANICA APPLICATA

GenCod A000048

Docente titolare Arcangelo MESSINA

Insegnamento MECCANICA APPLICATA Anno di corso 3

Insegnamento in inglese APPLIED

MECHANICS

Settore disciplinare ING-IND/13

Lingua ITALIANO

Percorso PERCORSO COMUNE

Corso di studi di riferimento INGEGNERIA INDUSTRIALE

Tipo corso di studi Laurea

aurea Sede Lecce

Crediti 9.0 **Periodo** Primo Semestre

Ripartizione oraria Ore Attività frontale: Tipo esame Orale

81.0

Per immatricolati nel 2019/2020 Valuta

Valutazione Voto Finale

Erogato nel 2021/2022 Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

Analisi cinematica e dinamica di sistemi articolati. Fenomeni di attrito fra superfici a contatto. Analisi, verifica e progetto di dispositivi meccanici: giunti; trasmissione di potenza con cinghie; ruote dentate; rotismi ordinari ed epicicloidali; freni meccanici.

PREREQUISITI

È necessario aver superato l'esame di Meccanica Razionale. Sono anche utili i contenuti dell'esame di Disegno Tecnico Industriale.

OBIETTIVI FORMATIVI

Obiettivi del corso;

Il corso si prefigge di fornire i principi fondamentali della cinematica e della dinamica applicata nell'analisi di sistemi meccanici (meccanismi e sistemi articolati in genere) rivolgendo particolare, ma non esclusiva, attenzione a modelli con 'corpi rigidi' in presenza di vincoli lisci e/o scabri. Tali principi sono altresì applicati all'analisi e al progetto di classici dispositivi meccanici comunemente impiegati nell'ambito dell'Ingegneria Industriale quali sistemi di trasmissione a cinghia, ingranaggi, giunti, rotismi e sistemi frenanti. Gli stessi principi sono illustrati e discussi sia da un punto di vista vettoriale che energetico.

Risultati di apprendimento;

dopo il corso lo studente dovrebbe:

- * Avere acquisito la conoscenza delle leggi fondamentali della Fisica/Meccanica che regolano il funzionamento dei dispositivi meccanici.
- * Avere acquisito la capacità di scegliere le metodologie fondamentali per affrontare l'analisi funzionale di tipici componenti e sistemi meccanici.
- * Avere acquisito la capacità di effettuare in autonomia l'analisi funzionale dei componenti meccanici e l'analisi cinematica e dinamica di dispositivi meccanici.
- * Avere acquisito le competenze che lo mettano nelle condizioni di confrontare e scegliere autonomamente macchine e sistemi meccanici in funzione di requisiti di progetto di riferimento. E' altresì fondamentale che gli studenti siano in grado di comunicare con un pubblico vario e composito in modo chiaro, logico ed efficace, utilizzando gli strumenti metodologici acquisiti le loro conoscenze scientifiche.

METODI DIDATTICI

Trattasi di lezioni frontali svolte in aula dal docente tramite l'ausilio di gesso e lavagna. Nel corso delle lezioni saranno occasionalmente illustrati e discussi dispositivi meccanici reali e software commerciali; questi ultimi utili all'analisi dei sistemi meccanici discussi nel corso delle lezioni. Si consiglia agli studenti di seguire le lezioni, partecipare attivamente alle stesse e prendere appunti.

Avviso (30/05/2020)

Qualora l'emergenza COVID-19 dovesse protrarsi le lezioni frontali potrebbero essere somministrate tramite piattaforma telematica. Nel corso delle lezioni telematiche saranno comunque discussi dispositivi meccanici reali e software commerciali; questi ultimi utili all'analisi dei sistemi meccanici analizzati nel corso delle lezioni. Si consiglia agli studenti di seguire le lezioni, partecipare attivamente alle stesse e prendere appunti.

MODALITA' D'ESAME

scritto e/o orale

L'esame consiste di due prove in cascata (massima durata: 2 ore):

- -nella prima prova (scritta), lo studente deve risolvere un esercizio relativo agli argomenti trattati nel corso; la prova, della durata di circa 1 ora, mira a determinare la capacità dello studente di effettuare in autonomia l'analisi funzionale e quantitativa di dispositivi meccanici;
- -nella seconda prova (orale), che inizia subito dopo la prova scritta, lo studente discute oralmente sia l'elaborato scritto sia altri contenuti del corso illustrando il proprio livello di conoscenza e comprensione degli argomenti trattati e la capacità di disporne allo scopo di effettuare pertinenti analisi cinematiche e dinamiche.

Avviso (20/05/2020), (30/04/2021: modifica in corso delle modalità d'esame come descritto nella sezione NOTIZIE)

Qualora l'emergenza COVID-19 dovesse protrarsi, le modalità degli appelli di Meccanica Applicata potrebbero subire delle variazioni. Tali variazioni interesserebbero principalmente la modalità di somministrazione; quest'ultima, considerato il DR 197/2020 del 12/03/2020 e ss, potrebbe avvenire in modalità telematica anziché in presenza. L'esame consisterebbe in una prova orale preceduta dalla predisposizione/discussione di un lavoro individuale; come sempre potranno essere rivolte ai candidati domande pertinenti ai contenuti del corso.

APPELLI D'ESAME

30/04/2021: in corso di pianificazione

ALTRE INFORMAZIONI UTILI

Occasionalmente, nel corso delle lezioni, potrà essere consegnato materiale didattico ausiliario.

PROGRAMMA ESTESO

Cinematica e dinamica del corpo rigido e strutture elementari dei sistemi meccanici: vincoli cinematici, gradi di libertà e schemi di corpo libero. Analisi cinematica e dinamica di sistemi articolati ad uno o più gradi di libertà con procedimento grafico e analitico. Aderenza ed attrito fra superfici a contatto. Coefficienti ed angoli di aderenza ed attrito. Attrito negli accoppiamenti rotoidali. Analisi dinamica di meccanismi in assenza e in presenza di attrito. Esercitazioni sugli argomenti trattati. Giunti, tipi e funzioni; giunto di Cardano, analisi cinematica e dinamica del giunto di Cardano e giunti omocinetici.

Flessibili; proprietà materiali e geometriche dei flessibili; trasmissione di potenza con cinghie, forzamento, analisi e progettazione funzionale di sistemi di trasmissione con cinghie, potenza massima trasmissibile. Esercitazioni sugli argomenti trattati.

Ruote dentate e rotismi; analisi cinematica e dinamica dell'ingranamento fra ruote dentate cilindriche a denti dritti ed elicoidali e ruote dentate coniche a denti dritti. Rotismi ordinari ed epicicloidali. Esercitazioni sugli argomenti trattati.

Freni; definizioni e funzione dei freni, distribuzione delle pressioni di contatto ed ipotesi di Reye, analisi dinamica dei freni a ceppi, a disco e a nastro. Esercitazioni sugli argomenti trattati.

TESTI DI RIFERIMENTO

- [1] Jacazio G., Pastorelli S. *Meccanica applicata alle macchine*, Ed. Levrotto & Bella, 2001, Torino.
- [2] Guido A.R., Della Pietra L., Lezioni di meccanica delle macchinevol. I e II, Ed. CUEN, 1989, Napoli.