MATEMATICA (LB04)

(Università degli Studi)

Insegnamento FISICA GENERALE II (MODULO B)

GenCod A005431

Docente titolare FRANCESCO DE PALMA

Insegnamento FISICA GENERALE II (MODULO B)

Insegnamento in inglese PHYSICS II (PART B)

Settore disciplinare FIS/01

Corso di studi di riferimento

MATEMATICA

Crediti 6.0

Tipo corso di studi Laurea

Ripartizione oraria Ore Attività frontale: Tipo esame

42.0

Per immatricolati nel 2018/2019 Valutazione

Erogato nel 2020/2021 Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

Anno di corso 3

Lingua ITALIANO

Sede

Percorso PERCORSO COMUNE

Periodo Secondo Semestre

BREVE DESCRIZIONE DEL CORSO

Il corso ha come obiettivo principale l'acquisizione di conoscenze e competenze di Termodinamica e di Elettromagnetismo che completano la preparazione di base di Fisica Classica.

PREREQUISITI

Conoscenze e competenze acquisite nei corsi di Fisica Generale I e II e di Analisi: cinematica, dinamica newtoniana, teoria della gravitazione; campi elettrico e magnetico indipendenti dal tempo (elettrostatica e magnetostatica), integrali ed equazioni differenziali.

OBIETTIVI FORMATIVI

Conoscenze e comprensione.

Acquisire una solida preparazione con un ampio spettro di conoscenze sia della Termodinamica classica che della Teoria di Maxwell del campo elettromagnetico.

Capacità di applicare conoscenze e comprensione:

- essere in grado di produrre dimostrazioni delle principali leggi fisiche studiate
- essere in grado di analizzare semplici problemi di fisica, in modo da individuare i fenomeni in atto, formalizzare e risolvere le equazioni che li descrivono
- essere in grado di comprendere in modo autonomo testi di Fisica Classica anche di livello avanzato

Autonomia di giudizio.

L'esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di identificare gli elementi rilevanti per l'analisi di situazioni e problemi in contesti fisici. L'autonomia di giudizio raggiunta sarà verificata durante la prova d'esame.

Abilità comunicative.

La presentazione degli argomenti sarà svolta in modo da consentire l'acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti la Fisica Classica con esperti di altri settori e di formalizzare situazioni di interesse applicativo.

Capacità di apprendimento.

Saranno indicati argomenti da approfondire, strettamente correlati con l'insegnamento, allo scopo di

- stimolare la capacità di apprendimento autonomo dello studente
- individuare le conoscenze da acquisire per la soluzione di un problema
- proseguire gli studi in modo autonomo
- adattarsi a nuove problematiche.

METODI DIDATTICI

Lezioni frontali ed esercitazioni in aula

MODALITA' D'ESAME

L'esame consiste di una prova orale durante la quale saranno inizialmente proposti allo studente esercizi di Termodinamica ed Elettromagnetismo simili a quelli svolti durante l'anno. La risoluzione dei problemi verifica l'abilità di individuare i fenomeni fisici in atto e le leggi che li descrivono. La prova orale verifica anche l'abilità di esporre in modo chiaro e rigoroso le leggi che descrivono i fenomeni studiati.

PROGRAMMA ESTESO

Elettromagnetismo (22 ore)

Campi elettrici e magnetici variabili nel tempo (10h):

legge di Faraday, origine della forza elettromotrice indotta, autoinduzione e mutua induzione, energia magnetica, corrente di spostamento, equazioni di Maxwell.

Circuiti in corrente alternata (4h):

circuito RLC alimentato da un generatore a corrente alternata; equazione differenziale per il circuito; metodo dei numeri complessi; potenza media erogata e dissipata.

Onde elettromagnetiche (4h):

conservazione dell'energia del campo elettromagnetico, vettore di Poynting; equazioni di Maxwell, equazione di D'Alembert; onde piane; onde monocromatiche; onde sferiche; polarizzazione.

Interferenza (4h):

interferenza di onde elettromagnetiche; esperimento di Young; interferometro di Michelson & Morley

Termodinamica (22 ore)

I principio della termodinamica (2h):

sistemi e stati termodinamici, equilibrio, sistemi adiabatici, energia interna, trasformazioni, lavoro e calore, trasformazioni adiabatiche, reversibilità e irreversibilità.

Calorimetria (2h):

calori specifici, trasmissione del calore, dilatazione termica

Gas ideali (4h):

leggi dei gas; equazione di stato dei gas ideali, trasformazioni di un gas e lavoro, calori specifici dei gas, energia interna del gas ideale, relazione di Mayer,

Studio di alcune trasformazioni termodinamiche (4h):

adiabatiche, isoterme, isocore, isobare ed entalpia, ciclo di Carnot, ciclo Stirling, Otto, Diesel, cicli frigoriferi

Gas reali (2h):

energia interna, teoria cinetica e calcolo della pressione, equipartizione dell'energia

Il principio della termodinamica (4h):

enunciato di Kelvin-Planck, enunciato di Clausius, teorema di Carnot, teorema di Clausius

Entropia (4h):

definizione, diagrammi TS, principio dell'aumento dell'entropia, calcolo di variazioni di entropia, entropia del gas ideale, energia utilizzabile, entropia e probabilità

TESTI DI RIFERIMENTO

Termodinamica: Fisica Vol I , autori: Mazzoldi. Nigro, Voci Elettromagnetismo: Fisica Vol II, autori: Mazzoldi. Nigro, Voci

