Tommaso PIROTTI

Tommaso PIROTTI

Settore Scientifico Disciplinare SECS-S/06: METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE.

Dipartimento di Scienze dell'Economia

Centro Ecotekne Pal. C - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio 26, Quarto piano

Telefono +39 0832 29 8647

Ricercatore in Metodi Matematici dell'Economia e delle Scienze Attuariali e Finanziarie (SSD: SECS-S/06)

Orario di ricevimento

Giovedì ore 14-16 presso lo studio del docente (campus universitatio Ecotekne,palazzina C, quarto piano)

Visualizza QR Code Scarica la Visit Card

Didattica

A.A. 2018/2019

MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Partizione (A - L)

Torna all'elenco
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:

A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B)Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali.

C)Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.

D)Coordinate cartesiane nel piano. Teorema di Pitagora. Distanza tra due punti nel piano. Equazione della retta. Equazione della parabola. Equazione della circonferenza.

Sarà fornito materiale per lo studio individuale delle conoscenze sopra-indicate.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica e di acquisire la capacità di risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine dello studio di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo matematico.

  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale.

  • Sviluppare la capacità di risolvere problemi di ottimizzazione per una variabile.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio matematico di base.

  • Conoscenza e capacità di comprendere gli aspetti fondamentali delle funzioni di una variabile.

  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di leggere, scrivere e comunicare nel linguaggio della matematica.

  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.

  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi di interesse economico/aziendale.

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un modello matematico di base (ad es. modello di previsione, andamento vendite) per l’azienda.

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche principali di un modello matematico (unidimensionale) per l’analisi economica.

Capacità di apprendimento: formalizzare in modo adeguato un problema matematico in diverse situazioni concrete

Lezioni frontali. Esercitazioni (facoltative)

Prova scritta con esercizi. Esame orale (facoltativo).

 

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte. In relazione alla prova orale, è valutata la padronanza degli argomenti esposti. La prova scritta è superata previo superamento di un test preliminare (prova di sbarramento), che si svolge contestualmente alla prova scritta ed è anche relativo agli argomenti indicati nella sezione “Prerequisiti”.

 

Gli studenti hanno anche la possibilità di sostenere l’esame in prove intermedie parziali (esoneri). Maggiori informazioni in tal senso saranno disponibili sulla pagina web del corso su formazioneonline.unisalento.it.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame è invitato a contattare l'ufficio Integrazione Disabili dell'Università del Salento.

Concetti matematici di base.

Insiemi, relazioni, funzioni. Insiemi numerici (naturali, razionali e reali). La rappresentazione del piano cartesiano. Retta, circonferenza, parabola.

 

Funzioni reali di variabile reale.

Funzioni elementari. Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

 

Limite di una funzione e funzione continua. Intorno di un punto. Definizione di limite. Limite destro e limite sinistro. Asintoti. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

 

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte.

 

Applicazioni della derivata. Approssimazione lineare. Elasticità. Teoremi di de l’Hopital. Elasticità parziale.

 

Ottimizzazione di una variabile. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione. Cenni all’ottimizzazione in due variabili con vincolo lineare.

 

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Integrazione per parti. Integrali definiti. Integrale come area.

 

Elementi di algebra lineare.

Vettori. Matrici. Determinanti. Sistemi di equazioni lineari. Regola di Cramer. Teorema di Rouché-Capelli.

Il materiale didattico (slide, dispense, testi esercitazioni) è distribuito attraverso il portale formazioneonline.unisalento.it (password: talete).

 

Per approfondimenti e/o studio individuale, si consiglia anche:

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015.

 

Gli studenti possono anche utilizzare qualsiasi altro testo di Matematica Generale, purché copra gli argomenti sopra-indicati.

MATEMATICA GENERALE
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MATEMATICA GENERALE (SECS-S/06)