Raffaele VITOLO

Raffaele VITOLO

Professore II Fascia (Associato)

Settore Scientifico Disciplinare MAT/07: FISICA MATEMATICA.

Dipartimento di Matematica e Fisica "Ennio De Giorgi"

Ex Collegio Fiorini - Via per Arnesano - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7337 +39 0832 29 7425

Professore associato di Fisica Matematica - Associate professor of Mathematical Physics

Area di competenza:

DIDATTICA: E' docente di varie materie di Fisica Matematica, tra cui Meccanica Razionale a studenti del secondo anno del corso di Laurea Triennale in Ingegneria Industriale, Mathematical Methods for Aerospace Engineering with Laboratory a studenti del primo anno del Corso di Laurea Magistrale in Aerospace Engineering.

RICERCA: La sua area di ricerca sono i metodi geometrici in Fisica Matematica e le applicazioni all'ingegneria. Per maggiori informazioni sull'attivita' di ricerca si veda il sito http://poincare.unisalento.it/vitolo

Orario di ricevimento

Sono sempre disponibile ad incontri da concordare via email, raffaele.vitolo@unisalento.it

 

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Nato nel 1966, studia Matematica presso l'Universita' di Camerino e l'Universita' di Firenze, dove consegue il titolo di Dottore di Ricerca sotto la guida del Prof. M. Modugno.

Dal 1998 e' docente presso l'Universita' del Salento, attualmente con la qualifica di professore associato nel settore scientifico-disciplinare "Fisica Matematica". Dal 2017 e' idoneo al ruolo di professore ordinario nello stesso settore.

Insegna disipline di Fisica Matematica e Matematica Applicata presso il corso di studi in Matematica (Laurea magistrale) e il corso di studi in Aerospace Engineering (Laurea Magistrale).

La sua area di ricerca e': metodi geometrici per le equazioni differenziali. E' autore di numerose pubblicazioni scientifiche su riviste internazionali, ed e' regolarmente invitato come relatore presso convegni sulla sua area di ricerca. Si consulti il sito personale http://poincare.unisalento.it/vitolo per maggiori informazioni e per il Curriculum Vitae aggiornato.

Scarica curriculum vitae

Didattica

A.A. 2022/2023

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso MATEMATICA PER L'INTELLIGENZA ARTIFICIALE

Sede Lecce

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso DIDATTICO

Sede Lecce

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso TEORICO-MODELLISTICO

Sede Lecce

MATEMATICA APPLICATA ALL'AMBIENTE

Corso di laurea SCIENZE AMBIENTALI

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 52.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE E TECNOLOGIE BIOLOGICHE ED AMBIENTALI

Percorso SVILUPPO E PIANIFICAZIONE SOSTENIBILI

Sede Lecce

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2022/2023

For matriculated on 2022/2023

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2022/2023

For matriculated on 2022/2023

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY

Location Brindisi

A.A. 2021/2022

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

MATEMATICA APPLICATA ALL'AMBIENTE

Corso di laurea SCIENZE AMBIENTALI

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Raffaele VITOLO

Ripartizione oraria Ore totali di attività frontale: 52.0

  Ore erogate dal docente Raffaele VITOLO: 26.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE E TECNOLOGIE BIOLOGICHE ED AMBIENTALI

Percorso SVILUPPO E PIANIFICAZIONE SOSTENIBILI

Sede Lecce

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2021/2022

For matriculated on 2021/2022

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2021/2022

For matriculated on 2021/2022

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY

Location Brindisi

A.A. 2020/2021

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

A.A. 2019/2020

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2019/2020

For matriculated on 2019/2020

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter DESIGN

Location Brindisi

A.A. 2018/2019

ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter MAIN COURSE

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Owner professor Raffaele VITOLO

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Raffaele VITOLO: 54.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter AEROSPACE DESIGN

Location Brindisi

Torna all'elenco
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso MATEMATICA PER L'INTELLIGENZA ARTIFICIALE (A227)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non lineari.

Le Studentesse/gli Studenti raggiungeranno i seguenti obiettivi:

  • Conoscenze e comprensione: equazioni differenziali alle derivate parziali e loro origine come modelli matematici per la fisica e l'ingegneria.

  • Capacità di applicare conoscenze e comprensione: capacita' di calcolo relativo alle equazioni differenziali mediante tecniche insegnate a lezione.

  • Autonomia di giudizio: nel corso i concetti sono sostenuti da calcoli che gli Studenti/Studentesse possono ripetere in modo autonomo anche per altre situazioni.

  • Abilità comunicative: il corso non sviluppa particolari attivita' comunicative.

  • Capacità di apprendimento: il corso stimola ad approfondire gli argomenti con calcoli svolti mediante tecniche insegnate a lezione. I collegamenti con la fisica espandono la cultura degli Studenti/Studentesse.

Lezioni ed esercitazioni.

Esame orale su tutti gli argomenti sviluppati a lezione. L'esame inizia con lo svolgimento di un esercizio simile a quelli svolti durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni - Operatori autoaggiunti e problemi di Sturm-Liouville.

Separazione delle variabili per equazioni in 2+1 variabili indipendenti. Soluzione di equazioni differenziali ordinarie per serie. Soluzione dell'equazione del calore per e dell'equazione delle onde nel piano.

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso DIDATTICO (A218)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non lineari.

Gli studenti apprenderanno tecniche risolutive per le piu' comuni equazioni differenziali alle derivate parziali. Sarà anche curato l'aspetto modellistico fisico ed ingegneristico della materia.

Lezioni ed esercitazioni.

Esame orale su tutti gli argomenti sviluppati a lezione. L'esame inizia con lo svolgimento di un esercizio simile a quelli svolti durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni - Operatori autoaggiunti e problemi di Sturm-Liouville.

Separazione delle variabili per equazioni in 2+1 variabili indipendenti. Soluzione di equazioni differenziali ordinarie per serie. Soluzione dell'equazione del calore per e dell'equazione delle onde nel piano.

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso TEORICO-MODELLISTICO (A217)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non lineari.

Gli studenti apprenderanno tecniche risolutive per le piu' comuni equazioni differenziali alle derivate parziali. Sarà anche curato l'aspetto modellistico fisico ed ingegneristico della materia.

Lezioni ed esercitazioni.

Esame orale su tutti gli argomenti sviluppati a lezione. L'esame inizia con lo svolgimento di un esercizio simile a quelli svolti durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni - Operatori autoaggiunti e problemi di Sturm-Liouville.

Separazione delle variabili per equazioni in 2+1 variabili indipendenti. Soluzione di equazioni differenziali ordinarie per serie. Soluzione dell'equazione del calore per e dell'equazione delle onde nel piano.

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATEMATICA APPLICATA ALL'AMBIENTE

Corso di laurea SCIENZE AMBIENTALI

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 52.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Primo Semestre (dal 03/10/2022 al 20/01/2023)

Lingua ITALIANO

Percorso SVILUPPO E PIANIFICAZIONE SOSTENIBILI (A185)

Sede Lecce

E' necessaria la conoscenza e la padronanza dei contenuti del corso di Istituzioni di Matematica per la Laurea in Scienze Ambientali.

Il corso si propone di fornire le basi per la comprensione e lo studio
di modelli matematici applicabili nell’ambito delle scienze della vita, con particolare riferimento al
campo delle scienze ambientali.

Le Studentesse/gli Studenti raggiungeranno i seguenti obiettivi:

  • Conoscenze e comprensione: modelli matematici per le scienze ambientali, loro genesi, proprieta' ed utilizzo.

  • Capacità di applicare conoscenze e comprensione: capacita' di calcolo relativo ai modelli studiati mediante tecniche insegnate a lezione. I calcoli saranno svolti al calcolatore, utilizzando il linguaggio Matlab per l'analisi e la rappresentazione grafica delle simulazioni e dei dati.

  • Autonomia di giudizio: alla fine del corso le Studentesse/gli Studenti dovranno preparare un elaborato su un argomento concordato con il docente. La preparazione avverra' in autonomia e mostrera' il grado di indipendenza raggiunto.

  • Abilità comunicative: l'esame finale comprende una presentazione dei risultati raggiunti nell'elaborato di cui sopra.

  • Capacità di apprendimento: il corso stimola ad approfondire gli argomenti con calcoli svolti al calcolatore mediante tecniche insegnate a lezione.

Alla fine del corso gli studenti saranno in grado di capire semplici modelli matematici per le scienze ambientali, interpretare i risultati di simulazioni matematiche e confrontare questi con dati sperimentali ed osservativi.

Lezioni frontali e laboratorio di modellistica applicata.

Sviluppo di un progetto da concordare col docente e discussione orale del progetto e degli argomenti svolti a lezione.

Le date sono consultabili nel sistema di prenotazione esami online.

Contattare R. Vitolo via email per concordare ricevimenti/discussioni.

1 - Introduzione alla modellistica.
2 - Richiami di teoria dei sistemi dinamici e di teoria delle biforcazioni
3 - Elementi di dinamica di popolazioni:
modelli di popolazioni (animali, vegetali) sottoposte a sfruttamento da parte dell’uomo:
modelli di popolazioni sottoposte a sfruttamento costante, modelli di popolazioni
sottoposte a sfruttamento dipendente dalla densità.
4 - Elementi di epidemiologia: il modello SIR, le sue evoluzioni e le applicazioni ad epidemie concrete.

5 - Soluzione numerica di equazioni differenziali ordinarie al computer. Utilizzo dell'ambiente di calcolo numerico Matlab. Produzione di grafici ed animazioni.

G. Gaeta: Modelli Matematici in Biologia, Springer, 2007.

MATEMATICA APPLICATA ALL'AMBIENTE (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2022/2023

Year taught 2022/2023

Course year 1

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The Students will reach the following objectives:

  • Knowledge and understanding: partial differential equations and their origin as mathematical models for physics and engineering.

  • Ability to apply knowledge and understanding: computational abilities for differential equations. The techniques will be tought during the lectures.

  • Autonomy: all concepts will be based on computations that the Students can repeat or expand in an autonomous way, and can be used in a variety of situations.

  • Communicating abilities: the course does not involve comminicative abilities in a significant way.

  • Learning abiliites: the Students will learn that complex mathematical problems can be solved with computer.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs

Introduction to PDEs for Engineers
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2022/2023

Year taught 2022/2023

Course year 1

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Language INGLESE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY (A101)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs

Introduction to PDEs for Engineers
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 27/09/2021 al 17/12/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non lineari.

Gli studenti apprenderanno tecniche risolutive per le piu' comuni equazioni differenziali alle derivate parziali. Sarà anche curato l'aspetto modellistico fisico ed ingegneristico della materia.

Lezioni ed esercitazioni.

Esame orale su tutti gli argomenti sviluppati a lezione. L'esame inizia con lo svolgimento di un esercizio simile a quelli svolti durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni - Operatori autoaggiunti e problemi di Sturm-Liouville.

Separazione delle variabili per equazioni in 2+1 variabili indipendenti. Soluzione di equazioni differenziali ordinarie per serie. Soluzione dell'equazione del calore per e dell'equazione delle onde nel piano.

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATEMATICA APPLICATA ALL'AMBIENTE

Corso di laurea SCIENZE AMBIENTALI

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Raffaele VITOLO

Ripartizione oraria Ore totali di attività frontale: 52.0

  Ore erogate dal docente Raffaele VITOLO: 26.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 04/10/2021 al 21/01/2022)

Lingua ITALIANO

Percorso SVILUPPO E PIANIFICAZIONE SOSTENIBILI (A185)

Sede Lecce

E' necessaria la conoscenza e la padronanza dei contenuti del corso di Istituzioni di Matematica per la Laurea in Scienze Ambientali.

Il corso si propone di fornire le basi per la comprensione e lo studio
di modelli matematici applicabili nell’ambito delle scienze della vita, con particolare riferimento al
campo delle scienze ambientali.

Alla fine del corso gli studenti saranno in grado di capire semplici modelli matematici per le scienze ambientali, interpretare i risultati di simulazioni matematiche e confrontare questi con dati sperimentali ed osservativi.

Lezioni frontali e laboratorio di modellistica applicata.

Sviluppo di un progetto da concordare col docente e discussione orale del progetto e degli argomenti svolti a lezione.

Le date sono consultabili nel sistema di prenotazione esami online.

1 - Introduzione alla modellistica.
2 - Richiami di teoria dei sistemi dinamici e di teoria delle biforcazioni
3 - Elementi di dinamica di popolazioni:
modelli di popolazioni (animali, vegetali) sottoposte a sfruttamento da parte dell’uomo:
modelli di popolazioni sottoposte a sfruttamento costante, modelli di popolazioni
sottoposte a sfruttamento dipendente dalla densità.
4 - Elementi di epidemiologia: il modello SIR, le sue evoluzioni e le applicazioni ad epidemie concrete.

5 - Soluzione numerica di equazioni differenziali ordinarie al computer. Utilizzo dell'ambiente di calcolo numerico Matlab. Produzione di grafici ed animazioni.

G. Gaeta: Modelli Matematici in Biologia, Springer, 2007.

MATEMATICA APPLICATA ALL'AMBIENTE (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2021/2022

Year taught 2021/2022

Course year 1

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs

Introduction to PDEs for Engineers
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2021/2022

Year taught 2021/2022

Course year 1

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Language INGLESE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY (A101)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs

Introduction to PDEs for Engineers
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Primo Semestre (dal 21/09/2020 al 18/12/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non lineari.

Gli studenti apprenderanno tecniche risolutive per le piu' comuni equazioni differenziali alle derivate parziali. Sarà anche curato l'aspetto modellistico fisico ed ingegneristico della materia.

Lezioni ed esercitazioni.

Esame orale su tutti gli argomenti sviluppati a lezione. L'esame inizia con lo svolgimento di un esercizio simile a quelli svolti durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni - Operatori autoaggiunti e problemi di Sturm-Liouville.

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Language INGLESE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY (A101)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Primo Semestre (dal 30/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non.

Gli studenti saranno in grado di risolvere le piu' comuni equazioni differenziali alle derivate parziali, anche tramite l'utilizzo di calcolo simbolico.

Lezioni, esercitazioni e laboratorio di calcolo simbolico.

Esame orale con prova di calcolo simbolico su un problema affrontato durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2019/2020

Year taught 2019/2020

Course year 1

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Language INGLESE

Subject matter DESIGN (A101)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 02/10/2018 al 21/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non.

Gli studenti saranno in grado di risolvere le piu' comuni equazioni differenziali alle derivate parziali, anche tramite l'utilizzo di calcolo simbolico.

Lezioni, esercitazioni e laboratorio di calcolo simbolico.

Esame orale con prova di calcolo simbolico su un problema affrontato durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter MAIN COURSE (A58)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Owner professor Raffaele VITOLO

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Raffaele VITOLO: 54.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Primo Semestre (dal 25/09/2017 al 15/12/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Sono necessarie conoscenze di Analisi Matematica di una o piu' variabili reali, Algebra Lineare, argomenti di base di Geometria Differenziale, Serie di Fourier

Onde lineari e non lineari. Separazione delle variabili. Distribuzioni e funzioni di Green. Trasformate di Fourier. Applicazioni alla soluzione di equazioni di evoluzione lineari e non.

Gli studenti saranno in grado di risolvere le piu' comuni equazioni differenziali alle derivate parziali, anche tramite l'utilizzo di calcolo simbolico.

Lezioni, esercitazioni e laboratorio di calcolo simbolico.

Esame orale con prova di calcolo simbolico su un problema affrontato durante il corso.

Per qualsiasi dubbio scrivere un email al docente: raffaele.vitolo@unisalento.it

Onde lineari e non lineari: - Onde stazionarie - Trasporto e onde viaggianti - Trasporto non lineare e shocks - Equazione delle onde di D'Alembert

Separazione delle variabili. - Diffusione ed equazione del calore - Equazione delle onde - Equazioni di Laplace e di Poisson nel piano - Classificazione delle equazioni lineari

Funzioni generalizzate e funzioni di Green - Funzioni generalizzate - Funzioni di Green per problemi al bordo - Funzioni di Green per equazione di Poisson

Equazioni di evoluzione lineari e non lineari - Soluzione fondamentale dell'equazione del calore - Simmetria e similarita' - Diffusione non lineare - Dispersione e solitoni

Il libro di testo del corso è

P. Olver: Introduction to Partial Differential Equations, Springer, 2014; second corrected printing, 2016.


Sono riferimenti bibliografici suggeriti:

W. Strauss, Partial Differential Equations: An Introduction. Wiley, 1992.
A.N. Tikhonov, A.A. Samarski: Equazioni della Fisica Matematica, MIR.
B. Neta: Introduction to Partial Differential Equations, Lecture Notes.

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

Calculus of functions of one or more real variables; linear algebra.

Algorithms and methods of approximate solution of algebraic and differential equations, with computer experiments.

The students will acquire basic knowledge about main numerical methods in engineering applications.

Lectures and computer experiments.

Oral exam on the course program (as exposed during the lectures) and proof of knowledge of the Matlab language.

Matrix computations
Principles of numerical mathematics
Direct methods for the solution of linear systems
Iterative methods for the solution of linear systems
Iterative methods for eigenvalues and eigenvectors
Solution of non-linear algebraic equations
Polynomial interpolation of functions and data
Numerical integration
Orthogonal polynomials and Fourier transform
Numerical solution of ODEs
Finite difference methods and finite element methods for PDEs.
 

Quarteroni, Sacco, Saleri: Numerical Mathematics, 2nd ed., Springer 2006.

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Language INGLESE

Subject matter MAIN COURSE (A58)

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MECCANICA RAZIONALE E DEI CONTINUI

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Secondo Semestre (dal 26/02/2018 al 25/05/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MECCANICA RAZIONALE E DEI CONTINUI (MAT/07)
ISTITUZIONI DI FISICA MATEMATICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2016/2017

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2016 al 16/12/2016)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

ISTITUZIONI DI FISICA MATEMATICA (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2016/2017

Year taught 2016/2017

Course year 1

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MECCANICA RAZIONALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Brindisi

MECCANICA RAZIONALE (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Degree course AEROSPACE ENGINEERING

Subject area MAT/07

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2015/2016

Year taught 2015/2016

Course year 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Brindisi

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MECCANICA RAZIONALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

MECCANICA RAZIONALE (MAT/07)
MECCANICA RAZIONALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

MECCANICA RAZIONALE (MAT/07)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)
MECCANICA RAZIONALE

Corso di laurea INGEGNERIA CIVILE

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

MECCANICA RAZIONALE (MAT/07)
MECCANICA RAZIONALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

MECCANICA RAZIONALE (MAT/07)
GEOMETRIA ED ALGEBRA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare MAT/02

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

GEOMETRIA ED ALGEBRA (MAT/02)
MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare MAT/07

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

MATHEMATICAL AND NUMERICAL METHODS IN AEROSPACE ENGINEERING, WITH LABORATORY (MAT/07)

Tesi

R. Vitolo e' disponibile ad assegnare tesi di laurea in Matematica come relatore. I temi vanno dalla teoria geometrica delle equazioni differenziali, al calcolo simbolico e numerico, alle applicazioni ingegneristiche. R. Vitolo e' disponibile a partecipare come correlatore a tesi di laurea in altre discipline (Fisica, Ingegneria, Biologia) ove ci sia bisogno di un docente per seguire la stesura di contenuti matematici.

Ultime tesi assegnate:

P. Vergallo, ‘The geometry of Hamiltonian formalism for PDEs’, laurea magistrale
in Matematica (2018).
S. Rizzello, ‘The generalization of master equations for Hortonian river
structures’, laurea magistrale in Ingegneria Civile (2019, correlatore).
N. Cretì, ‘Finite difference model of wave motion for structural health mo-
nitoring’, laurea magistrale in Matematica (2019).

Pubblicazioni

Le pubblicazioni sono reperibili presso il sito - The publications are available at the website: <a href="http://poincare.unisalento.it/vitolo">http://poincare.unisalento.it/vitolo</a>

Scarica pubblicazioni

Temi di ricerca

R. Vitolo studia metodi geometrici per la Fisica Matematica ed applicazioni. In particolare studia la classificazione e la risoluzione di equazioni differenziali e la soluzione di problemi matematici per applicazioni ingegneristiche. Per maggiori informazioni, visitare il sito http://poincare.unisalento.it/vitolo

R. Vitolo is an expert in geometric methods in Mathematical Physics and applications. In particular, he studies the classification and the solution of differential equations and the solution of mathematical problems in engineering. For further information, see http://poincare.unisalento.it/vitolo