Massimo DE VITTORIO

Massimo DE VITTORIO

Professore I Fascia (Ordinario/Straordinario)

Settore Scientifico Disciplinare ING-INF/01: ELETTRONICA.

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 8200

Massimo De Vittorio is Full Professor at Università del Salento where he is lecturer of the courses “Electronic and Photonic Devices” and “Nanotechnologies for Electronics” and Director of the Center for Biomolecular Nanotechnologies of the Istituto Italiano di Tecnologia in Lecce - Italy.

Area di competenza:

M. De Vittorio is in charge for the activities and micro and nanofabrication facilities for electronic, photonic and MEMS devices. His research activity deals with the development of science and technology applied to nanophotonics, nanoelectronics and nano and micro electromechanical systems (NEMS/MEMS) for applications in the fields of ICT, life-science, energy and robotics.Author of about 210 manuscripts on international journals, 70 proceedings of international conferences, 13 patents, 9 book chapters and more than 50 invited/keynote talks to international conferences, he is also senior editor of the Journal IEEE Transactions on Nanotechnology, member of the editorial board of the Journal Microelectronic Engineering (Elsevier) and editor of the book “Nanotechnologies and neuroscience” (Springer).

 

Orario di ricevimento

 

Dal lunedì al venerdì (ore 8:30-13:15; 15:00-18:30) previo appuntamento via email o telefonico

Monday-Friday by email appointment

Recapiti aggiuntivi

Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Via Barsanti 14, 73010 Arnesano (Lecce)

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Massimo De Vittorio is Director of the Center for Biomolecular Nanotechnologies of the Istituto Italiano di Tecnologia in Lecce – Italy and Full Professor at Università del Salento where he is lecturer of the courses “Electronic and Photonic Devices” and “Nanotechnologies for Electronics”. He has been founder and responsible for more than ten years of the nanodevice division at the National Nanotechnology Laboratory (NNL) of the CNR Istituto Nanoscienze. His research activity deals with the development of science and technology applied to nanophotonics, nanoelectronics and nano and micro electromechanical systems (NEMS/MEMS) for applications in the fields of ICT, life-science, energy and robotics.

Author of about 220 manuscripts on international journals, 60 proceedings of international conferences, 13 patents, 9 book chapters and more than 60 invited/keynote talks to international conferences, he is also senior editor of the Journal IEEE Transactions on Nanotechnology, member of the editorial board of the Journal Microelectronic Engineering (Elsevier), editor of the book “Nanotechnologies and neuroscience” (Springer) and founder/advisor of four startup companies.

---------------------------------------------------------------------------------------

Nanotechnologies for Electronics  (a.a. 2012/2013)

II semester (01/03/2017-02/06/2017)

CdLM Communication Engineering and Electronic Technologies
CdLM Materials Engineering and nanotechnology

Overview The course deals with the most advanced technologies at the nanometer and micrometer scale for the fabrication and characterization of electronic, photonic and micro- and nano-electromechanical MEMS/NEMS systems and devices. It describes how micro and nanotechnologies impact different fields and applications such as Information and Communication Technologies (ICT), Energy, Lifescience and Medicine and it shows how the most advanced devices, often employed in our portable and home electronics, such as nanoscale transistors, smart sensors and microelectromechanical systems, are fabricated and tested. During the course several visits to the nanotechnology laboratory of the “Center for Biomolecular Nanotechnologies” of the Istituto Italiano di Tecnologia, with demonstrations of the available state of the art equipment for front-end (material and device fabrication) and back-end (device packaging, characterization, test) tools, will be done. The course also includes a training on multiphysics finite element method softwares for electronic, photonic and MEMS device design and simulation.

Examination: oral discussion on a state of the art nanotechnology for the fabrication of an electronic, photonic or microelectromechanical device.

Office Hours: By appointment; contact the instructor by email or at the end of class meetings.

References

[1] Handouts and course notes.
[2] Springer Handbook of Nanotechnology.

---------------------------------------------------------------------------------------

Electronic and Photonic Devices  (a.a. 2013/2014) 

I Semester (26/09/2016-22/12/2016)

CdLM Communication Engineering and Electronic Technologies
CdLM Materials Engineering and nanotechnology

Overview The course deals with the working principle of the most important electronic devices (diodes, bipolar junction transistor, CMOS technology ...) and photonic devices (LED, Laser, photovoltaic devices ...).
It is organized in the following parts:
- Introduction on the solid state physics, energy bands and current transport mechanisms in semiconductors.
- Two terminal and three terminal electronic devices (p-n and Schottky junction diodes, bipolar transistors and MOSFETs
- light emitting and detecting photonic devices  

The course also includes lectures on simulation of devices behavior.

Examination: oral. 

Office Hours: By appointment; contact the instructor by email or at the end of class meetings.

References

[1] lecture notes
[2] S.M. Sze, Semiconductor Devices: Physics and Technology, Bell Tel.Labs.Inc.
[3] R.S. Muller-T.I. Kamins, Dispositivi Elettronici nei Circuiti Integrati, Boringhieri
[4] Ghione G., Dispositivi per la Microelettronica, McGraw Hill.

 

Didattica

A.A. 2018/2019

ELECTRONIC AND PHOTONIC DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Lingua INGLESE

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONIC

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Lingua INGLESE

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS

Sede Lecce - Università degli Studi

A.A. 2017/2018

ELECTRONIC AND PHOTONIC DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Lingua INGLESE

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2017/2018

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONIC

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Lingua INGLESE

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2016/2017

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS

Sede Lecce - Università degli Studi

A.A. 2016/2017

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2015/2016

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2016/2017

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2015/2016

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS

Sede Lecce - Università degli Studi

A.A. 2015/2016

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2014/2015

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2014/2015

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2014/2015

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 81.0 Ore Studio individuale: 144.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2015/2016

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

A.A. 2014/2015

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2013/2014

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2013/2014

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 78.0 Ore Studio individuale: 147.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2014/2015

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2013/2014

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS

Sede Lecce - Università degli Studi

A.A. 2013/2014

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 78.0 Ore Studio individuale: 147.0

Anno accademico di erogazione 2013/2014

Per immatricolati nel 2013/2014

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

Torna all'elenco
ELECTRONIC AND PHOTONIC DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 24/09/2018 al 21/12/2018)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

Background on solid state physics is recommended

The course deals with the working principle of the most important electronic devices (diodes, bipolar junction transistor, CMOS technology ...) and photonic devices (LED, Laser, optical fibers, photovoltaic devices ...).

It is organized in the following parts:

  • Introduction on the solid state physics, energy bands and current transport mechanisms in semiconductors.
  •  Two terminal and three terminal electronic devices (p-n and Schottky junction diodes, bipolar transistors and MOSFETs
  • light emitting and detecting photonic devices 

The course also includes lectures on simulation of devices behavior.

Knowledge and understanding. Students must have a background in electromagnetic fields and waves and basic background in material science:

  • the students must have the basic cognitive tools to understand semiconductor crystals and their electronic properties and apply this to understand how electrons move and distribute in a semiconductor device;
  • they must have a solid knowledge of the electromagnetic waves and fields;
  • they must be able to understand electric fields, potentials and voltages and electrostatic properties of materials;
  • They must have a basic knowledge of electronic circuits, passive and active two- and three-terminals electronic devices.

Applying knowledge and understanding. After the course the student should be able to:

  • understand what are the carrier transport, absorption and recombination mechanisms in semiconductor devices;
  • understand how an electronic device works and what are the key parameters to design an efficient two terminal or three terminal electronic devices;
  • design a LED or Laser device for different photonic applications;
  • understand and design a photodetector.

Making judgements. Students are guided to learn critically everything that is explained to them in class, to understand the behavior of the state of the art technologies for electronic and photonic devices and to design new devices.

Communication. The students will be stimulated to be able to communicate with a varied and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the methodological tools acquired and their scientific knowledge and, in particular, with and professional and scientific vocabulary.

Learning skills. Students must acquire the critical ability to understand the behavior of devices at the nanoscale. They should be able to develop and apply independently the knowledge and methods learnt with a view to possible continuation of studies at higher (doctoral) level or in the broader perspective of cultural and professional self-improvement of lifelong learning.

The teaching of the course will make use of both the blackboard and projection of videos and slides. Simulation of devices will be also done by exploiting freely available online tools.

Oral exam. The student is asked theoretical questions on each part of the course. During the discussion the student is asked to elaborate on the purpose of specific technological solutions in the design and fabrication of electronic devices and he/she is also asked to propose a different solution for a device with specific properties.

Solid State Physics

Physics of semiconductor materials, semiconductor technology, metal-semiconductor junction, p-n junction (12 hours).

 

Semiconductor Electronic devices

The Bipolar Junction Transistor (BJT), BJT working principle, BJT static and dynamic I-V characteristics, Models for BJT, The MOS Transistors and system, current-voltage characteristics of a MOSFET, MOSFET small and large signal models (22 hours).

 

Photonic devices

Optical processes in semiconductors, the LED, the LASER, laser waveguide and resonant cavities, material gain, type of semiconductor lasers, optical detectors and photovoltaic devices (20 hours).


[1] lecture notes

[2] S.M. Sze, Semiconductor Devices: Physics and Technology, Bell Tel.Labs.Inc.

[3] R.S. Muller-T.I. Kamins, Dispositivi Elettronici nei Circuiti Integrati, Boringhieri

[4] Ghione G., Dispositivi per la Microelettronica, McGraw Hill.

ELECTRONIC AND PHOTONIC DEVICES (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONIC

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Lingua INGLESE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS (A53)

Sede Lecce - Università degli Studi

Background on solid state physics and semiconductor devices is recommended but not mandatory

The course deals with the most advanced technologies at the nanometer and micrometer scale for the fabrication and characterization of electronic, photonic and micro- and nano-electromechanical MEMS/NEMS systems and devices. It describes how micro and nanotechnologies impact different fields and applications such as Information and Communication Technologies (ICT), Energy, Lifescience and Medicine and it shows how the most advanced devices, often employed in our portable and home electronics, such as nanoscale transistors, smart sensors and microelectromechanical systems, are fabricated and tested. During the course several visits to the nanotechnology laboratory of the “Center for Biomolecular Nanotechnologies” of the Istituto Italiano di Tecnologia, with demonstrations of the available state of the art equipment for front-end (material and device fabrication) and back-end (device packaging, characterization, test) tools, will be done. The course also includes a training on multiphysics finite element method softwares for electronic, photonic and MEMS device design and simulation.

Knowledge and understanding. Students must have a background in semiconductor crystals and devices and basic background in material science:

  • the students must have the basic cognitive tools to understand semiconductor crystals and their technology;
  • they must have knowledge of the electromagnetic waves and how they are applied to microscopy and technology;
  • they must be able to understand the chemistry behind micro and nanotechnologies;

Applying knowledge and understanding. After the course the student should be able to:

  • understand how a micro and nanodevice is designed, fabricated and tested;
  • how micro and nano fabrication, characterization and packaging tools work;
  • use simulation software tools to design and predict the operation of an electronic, photonic and microelectromechanical devices and systems;

Making judgements. Students are guided to learn critically everything that is explained to them in class, to understand the behavior of the state of the art technologies for electronic and photonic and MEMS devices, and to design new devices.

Communication. The students will be stimulated to be able to communicate with a varied and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the methodological tools acquired and their scientific knowledge and, in particular, with and professional and scientific vocabulary. In particular they will be asked to select a state of the art technology, recently proposed in high impact journals, and to make a presentation about it to the classroom.

Learning skills

Students must acquire the critical ability to understand the behavior of devices at the micro and nanoscale. They should be able to develop and apply independently the knowledge and methods learnt with a view to possible continuation of studies at higher (doctoral) level or in the broader perspective of cultural and professional self-improvement of lifelong learning.

The teaching of the course will be a combination of projection of videos and slides and visits to labs with demonstration of state of the art technologies and clean-room equipments.

Oral exam. Discussion on a state of the art nanotechnology for the fabrication of an electronic, photonic or microelectromechanical device.

Introduction to Nanotechnology.

The nanoworld: top-down and bottom-up approaches for nanofabrication (4 hours);

Surface and Bulk Micro and Nanomachining: micro and nanotechnologies: electron beam lithography, scanning probe nanolithography, DUV and EUV lithography, X-Ray lithography, wet and dry etching, deposition and growth techniques, 3D laser lithographies, deep etching, LIGA (15 hours).

Characterization techniques

Electronic microscopy, scanning probe microscopy, microanalisis, spectroscopy (10 hours);

Applications of Nanotechnologies: examples of applications of nanotechnologies to electronic, photonic and micro and nanoelectromechanical devices and systems (4 hours);

 

Device simulation

Finite element (FEM) multiphysics modeling of an electronic, photonic and NEMS/MEMS device or structures (6 hours);

 

Laboratories

Laboratories on lithography, nanofabrication and characterization of nanostructures and devices (15 hours):

  • Visit of clean room and observation of the operation of nanotechnological tools;
  • Microscopy and characterization of samples and devices with different characterization tools.

 

[1] Handouts and course notes.

[2] Springer Handbook of Nanotechnology.

NANOTECHNOLOGIES FOR ELECTRONIC (ING-INF/01)
ELECTRONIC AND PHOTONIC DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Primo Semestre (dal 25/09/2017 al 22/12/2017)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONIC AND PHOTONIC DEVICES (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONIC

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2017/2018

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua INGLESE

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS (A53)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONIC (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Primo Semestre (dal 26/09/2016 al 22/12/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2016/2017

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2016 al 22/12/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS (A53)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Primo Semestre (dal 21/09/2015 al 18/12/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Primo Semestre (dal 21/09/2015 al 18/12/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS (A53)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 81.0 Ore Studio individuale: 144.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2015/2016

Anno di corso 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Primo Semestre (dal 29/09/2014 al 13/01/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
ELECTRONICS AND PHOTONICS DEVICES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Primo Semestre (dal 29/09/2014 al 13/01/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTRONICS AND PHOTONICS DEVICES (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 78.0 Ore Studio individuale: 147.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-INF/01

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 54.0 Ore Studio individuale: 96.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso MATERIALS FOR ELECTRONIC APPLICATIONS (A53)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)
NANOTECHNOLOGIES FOR ELECTRONICS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/01

Crediti 9.0

Ripartizione oraria Ore Attività frontale: 78.0 Ore Studio individuale: 147.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

NANOTECHNOLOGIES FOR ELECTRONICS (ING-INF/01)

Pubblicazioni

Publications on International Journals (2014-2017)

E.D.Lemma, F.Rizzi, T.Dattoma, B.Spagnolo, L.Sileo, A.Qualtieri, M.De Vittorio, F.Pisanello, “Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography”, IEEE Transactions on Nanotechnology, DOI: 10.1109/TNANO.2016.2625820, 2016.

F. Guido, A. Qualtieri, L. Algieri, E. D. Lemma, M. De Vittorio, and M. T. Todaro, “AlN-based flexible piezoelectric skin for energy harvesting from human motion”, Microelectron. Eng., vol. 159, pp. 174–178, Jun. 2016.

C. Abels, A. Qualtieri, M. De Vittorio, W. M. Megill, and F. Rizzi, “A bio-inspired real-time capable artificial lateral line system for freestream flow measurements,” Bioinspir. Biomim., vol. 11, no. 3, p. 35006, Jun. 2016.

F. Pisanello, L. Sileo, and M. De Vittorio, “Micro- and Nanotechnologies for Optical Neural Interfaces,” Front. Neurosci., vol. 10, Mar. 2016.

T. Dattoma, A. Qualtieri, K. D. Karavitaki, D. P. Corey, M. De Vittorio, and F. Rizzi, “Design of a Tunable PDMS Force Delivery and Sensing Probe for Studying Mechanosensation,” IEEE Sens. J., vol. 16, no. 3, pp. 620–627, Feb. 2016.

W. Geng, M. Manceau, N. Rahbany, V. Sallet, M. De Vittorio, L. Carbone, Q. Glorieux, A. Bramati, and C. Couteau, “Localised excitation of a single photon source by a nanowaveguide,” Sci. Rep., vol. 6, p. 19721, Jan. 2016.

V. M. Mastronardi, L. Ceseracciu, F. Guido, F. Rizzi, A. Athanassiou, M. De Vittorio, and S. Petroni, “Low stiffness tactile transducers based on AlN thin film and polyimide,” Appl. Phys. Lett., vol. 106, no. 16, p. 162901, Apr. 2015.

F. Rizzi, A. Qualtieri, T. Dattoma, G. Epifani, and M. De Vittorio, “Biomimetics of underwater hair cell sensing,” Microelectron. Eng., vol. 132, pp. 90–97, Jan. 2015.

S. Petroni, F. Rizzi, F. Guido, A. Cannavale, T. Donateo, F. Ingrosso, V. M. Mastronardi, R. Cingolani, and M. De Vittorio, “Flexible AlN flags for efficient wind energy harvesting at ultralow cut-in wind speed,” RSC Adv., vol. 5, no. 18, pp. 14047–14052, 2015.

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express, vol. 6, no. 10, pp. 4014–4026, Oct. 2015.

S. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, “Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature,” ACS Nano, vol. 9, no. 8, pp. 7992–8003, Aug. 2015.

L. Pelliser, M. Manceau, C. Lethiec, D. Coursault, S. Vezzoli, G. Leménager, L. Coolen, M. DeVittorio, F. Pisanello, L. Carbone, A. Maitre, A. Bramati, and E. Lacaze, “Alignment of Rod-Shaped Single-Photon Emitters Driven by Line Defects in Liquid Crystals,” Adv. Funct. Mater., vol. 25, no. 11, pp. 1719–1726, Mar. 2015.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep., vol. 5, p. 10531, May 2015.

J. J. Zárate, G. Tosolini, S. Petroni, M. De Vittorio, and H. Shea, “Optimization of the force and power consumption of a microfabricated magnetic actuator,” Sensors Actuators A Phys., vol. 234, pp. 57–64, Oct. 2015.

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express, vol. 23, no. 16, p. 21032, Aug. 2015.

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express, vol. 22, no. 25, p. 31511, Dec. 2014.

M. Grande, M. A. Vincenti, T. Stomeo, D. de Ceglia, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Absorption and Losses in One-Dimensional Photonic-Crystal-Based Absorbers Incorporating Graphene,” IEEE Photonics J., vol. 6, no. 6, pp. 1–8, Dec. 2014.

V. M. Mastronardi, F. Guido, M. De Vittorio, and S. Petroni, “Flexible Force Sensor Based on C-axis Oriented Aluminum Nitride,” Procedia Eng., vol. 87, pp. 164–167, 2014.

C. Accoto, A. Qualtieri, F. Pisanello, C. Ricciardi, C. F. Pirri, M. De Vittorio, and F. Rizzi, “Two-Photon Polymerization Lithography and Laser Doppler Vibrometry of a SU-8-Based Suspended Microchannel Resonator,” IEEE J. Microelectromechanical Syst., pp. 1–1, 2014.

P. Calcagnile, L. Blasi, F. Rizzi, A. Qualtieri, A. Athanassiou, E. Gogolides, and M. De Vittorio, “Parylene C Surface Functionalization and Patterning with pH-Responsive Microgels.,” ACS Appl. Mater. Interfaces, vol. 6, no. 18, pp. 15708–15, Sep. 2014.

M. Kruusmaa, P. Fiorini, W. Megill, M. De Vittorio, O. Akanyeti, F. Visentin, L. Chambers, H. El Daou, M.-C. Fiazza, J. Jezov, M. Listak, L. Rossi, T. Salumae, G. Toming, R. Venturelli, D. S. Jung, J. Brown, F. Rizzi, A. Qualtieri, J. L. Maud, and A. Liszewski, “FILOSE for Svenning: A Flow Sensing Bioinspired Robot,” IEEE Robot. Autom. Mag., vol. 21, no. 3, pp. 51–62, Sep. 2014.

D. Zecca, A. Qualtieri, G. Magno, M. Grande, V. Petruzzelli, B. Prieto-Simon, A. D’Orazio, M. De Vittorio, N. H. Voelcker, and T. Stomeo, “Label-Free Si3N4 Photonic Crystal Based Immunosensors for Diagnostic Applications,” IEEE Photonics J., vol. 6, no. 6, pp. 1–7, Dec. 2014.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-Emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics,” Neuron, vol. 82, no. 6, pp. 1245–1254, May 2014.

G. Leménager, F. Pisanello, J. Bloch, A. Kavokin, A. Amo, A. Lemaitre, E. Galopin, I. Sagnes, M. De Vittorio, E. Giacobino, and A. Bramati, “Two-photon injection of polaritons in semiconductor microstructures,” Opt. Lett., vol. 39, no. 2, p. 307, Jan. 2014.

M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, “Effect of charging on CdSe/CdS dot-in-rods single-photon emission,” Phys. Rev. B, vol. 90, no. 3, p. 035311, Jul. 2014.

V. M. Mastronardi, F. Guido, M. Amato, M. De Vittorio, and S. Petroni, “Piezoelectric ultrasonic transducer based on flexible AlN,” Microelectron. Eng., vol. 121, pp. 59–63, Jun. 2014.

O. A. Shcherbina, G. A. Shcherbina, M. Manceau, S. Vezzoli, L. Carbone, M. De Vittorio, A. Bramati, E. Giacobino, M. V Chekhova, and G. Leuchs, “Photon correlations for colloidal nanocrystals and their clusters.,” Opt. Lett., vol. 39, no. 7, pp. 1791–4, Apr. 2014.