Giuseppina MONTI

Giuseppina MONTI

Professore II Fascia (Associato)

Settore Scientifico Disciplinare ING-INF/02: CAMPI ELETTROMAGNETICI.

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7365

Professore Associato

Area di competenza:

Computer Aided Design di circuiti ed antenne a microonde ed alta frequenza

Orario di ricevimento

giovedì dalle ore 9,30 alle ore 10,30

venerdì dalle ore 9,00 alle ore 11,00

Recapiti aggiuntivi

0832297365

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

ORCID ID: 0000-0003-0595-2310
Scopus Author ID: 11339319500

Giuseppina Monti received the Laurea degree in Telecommunication Engineering (with honors) from the Univ. of Bologna, Italy, in 2003, and the Ph.D. in Information Engineering from Univ. of Salento (Italy), in 2007.

She is currently with the Dept. of Innovation Engineering (Univ. of Salento), where she is associate professor (SSD ING/INF-02) and Director of First and Second Cycle Degrees in Information Engineering (Bachelor’s Degree in Information Egineering, Master’s Degree in Computer Engineering, Master’s Degree in Communication Engineering and Electronic Technologies). She is Senior Member of IEEE, member of the European Microwave Association and of the Italian Society of Electromagnetism.

Her current research interest focuses on the design of devices for wireless power transfer and energy harvesting. She has co-authored three book chapters and more than 150 papers appeared in international conferences and journals.

 

She is member of the Editorial Board of the following Journals:
Area Editor and Associate Editor of the journal “Microwave and Optical Technology Letters” (Wiley)
Associate Editor of the journal “International Journal of Microwave and Wireless Technologies” (Cambridge University Press)
Associate Editor of the Journal "Electrical Engineering", Springer
Associate Editor of the journal "International Journal of Electronics and Communications", Elsevier.Academic Editor of the journal "Wireless Power Transfer" (Hindawi) .
Associate Editor of the journal "International Journal of Antennas and Propagation" (Hindawi)
Associate Editor of the journal "Sensors" (MDPI)

 

Didattica

A.A. 2023/2024

APPLIED ELECTROMAGNETICS

Degree course COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Owner professor Luciano TARRICONE

Teaching hours Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 27.0

Year taught 2023/2024

For matriculated on 2022/2023

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Telecom Applications

Location Lecce

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2022/2023

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2021/2022

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2022/2023

APPLIED ELECTROMAGNETICS

Degree course COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Owner professor Luciano TARRICONE

Teaching hours Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 27.0

Year taught 2022/2023

For matriculated on 2021/2022

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Telecom Applications

Location Lecce

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2021/2022

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2020/2021

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2021/2022

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2020/2021

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2019/2020

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2020/2021

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2020/2021

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2019/2020

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2018/2019

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2019/2020

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2019/2020

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2018/2019

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

Torna all'elenco
APPLIED ELECTROMAGNETICS

Degree course COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Subject area ING-INF/02

Course type Laurea Magistrale

Credits 9.0

Owner professor Luciano TARRICONE

Teaching hours Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 27.0

For matriculated on 2022/2023

Year taught 2023/2024

Course year 2

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Language INGLESE

Subject matter Telecom Applications (A181)

Location Lecce

In-depth knowledge of electromagnetic fields and microwaves

The course provides some examples of scientific and industrial applications of Electromagnetism, with particular emphasis to BioElectromagnetism, biomedical applications and intelligent wireless systems

Knowledge and understanding. During the course students will acquire the ability apply the theoretical knowledge of Electromagnetism and Microwaves to real cases

In particular, the main learning outcomes are:

* knowledge--wireless Systems and EM enabling technologies

* knowledge--electromagnetic compatibility problems,

* knowledge--Measurement Techniques and Instrumentations,

* laboratory experiments related to the scientific and industrial applications of electromagnetism.

Applying knowledge and understanding. After the course the student should be able to:

* deal with electromagnetic compatibility issues,

* solve complex problems involving electromagnetic technologies.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class. The goal is to ensure that at the end of the course students will be able to autonomously deal with electromagnetics problems.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with: electromagnetic compatibility problems, wireless and EM enabling technologies, measurements techniques.

Lectures, exercises for solving practical problems, computer exercises, laboratory exercises, seminars

Development and implementation of a practical project (verify the ability to solve practical problems) and oral exam (verify the ability to analyze, criticize, and present the course topics)

Please see the reference notes in the section related to the reference books/material to identify the materials to be studied for each part of the course’s program.

 

  • Introduction to the course [1]: Chapter 3, 4 and 5
  • Introduction to EMC [1]: Chapter 1
  •  BioEM

[2]: Chapter 1, 2, 3 and 4
[3]: Introduction, Chapter 1, 8 and 9

Professor's notes on EM Exposure Safety Standards and Laws

Three Professor's papers on BEM modelling
Professor's notes on numerical dosimetry
Professor's notes on classification of EM sources
Professor's notes on ELF fields emitted by Power lines and their reduction

[1], [4], Selected papers by (i) Hodgkin and Huxley, (ii) Colquhoun and Hawkes

 

  • Wireless Systems and EM enabling technologies

Professor's notes on Radiopropagation
Professor's notes on RFID
Professor's notes on new materials and technologies
[5]: Chapter 6
One Professor's paper on the convergence of EM Technologies towards IOT [6], [7]

 

  • Radar Systems for meteorology

Professor's notes [8], [9]

 

  • Shielding and Measurement Environments

[1]: Chapter 11
[11]: Chapter 5 and 6 [10], [11]

 

      -      Measurement Techniques and Instrumentations

              Professor's notes

Books:
[1] C. Paul, Electromagnetic Compatibility (EMC)
[2] J. Malmivuo, R. Plomsey, Bioelectromagnetics (BEM)
[3] C. Polk, E. Postow, CRC Handbook of Biological Effects of EM Fields
[4] B. Hille, Ionic Channels of Eccitable Membranes
[5] L. Tarricone, A. Esposito, Grid Computing for EM
[6] T. Rappaport, Wireless Communications
[7] K. Finkenzeller, D. Muller, RFID Handbook
[8] M. A. Richard, J. Scheer and W. Holm, Principles of Modern Radar
[9] R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations
[10] L. H. Hemming, EM Anechoic Chambers
[11] V. P. Kodali, Engineering EMC

APPLIED ELECTROMAGNETICS (ING-INF/02)
CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2023/2024

Anno di corso 2

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (8 hours)

Numerical methods for electromagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Microwave devices

Microwave resonators, dividers and couplers (3 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (18 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Scattering parameters measurements. Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (30 hours)

Project

How to solve a real problem. (16 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2023/2024

Anno di corso 3

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Conoscenze di analisi matematica, fisica e teoria dei circuiti. Propedeuticità: Fisica II e Teoria dei Circuiti

Lo studente familiarizza con le nozioni di base di elettromagnetismo, e le loro principali applicazioni, come per esempio lo studio della propagazione elettromagnetica guidata e non, e le antenne.

  • Conoscenza e comprensione dei concetti di base dell’elettromagnetismo
  • Capacità di applicare le conoscenze sopra citate alla propagazione elettromagnetica e alle antenne

Lezioni frontali, esercitazioni per la soluzione di problemi pratici, esercitazioni al calcolatore, esercitazioni in laboratorio, seminari

Prova scritta (verificare la capacità di risolvere problemi pratici) e prova orale (verificare la capacità di analisi, critica, ed esposizione degli argomenti)

Introduzione al corso    
    Descrizione degli obiettivi del corso e richiami di analisi vettoriale, elettrostatica e magnetostatica.

•    Equazioni e teoremi fondamentali - 1    
    Equazioni fondamentali del campo elettromagnetico: Equazioni di Maxwell, Relazioni costitutive, Teoremi di Poynting, unicità, equivalenza, reciprocità.

•    Equazioni e teoremi fondamentali - 2    
    Equazioni nel dominio della frequenza: fasori, trasformata di Fourier, equazioni e teoremi fondamentali nel dominio della frequenza .

•    Onde piane    
    Equazione di Helmholtz, potenziali elettrodinamici, onde piane nello spazio libero, polarizzazione, onde piane in mezzi non dispersivi e dispersivi, velocità di gruppo.

•    Riflessione e rifrazione.    
    Caso di incidenza normale ed obliqua; incidenza su buon conduttore e metallo perfetto; onde evanescenti

•    La propagazione guidata    
    Formulazione del problema; modi TEM, TE e TM; il caso della guida rettangolare

•    Linee di trasmissione    
    Introduzione alle linee di trasmissione: Equazioni dei telegrafisti, impedenza, coefficiente di riflessione.

•    Antenne e propagazione    
    Introduzione al concetto di antenna; dipolo hertziano; parametri di antenne in trasmissione e ricezione; esempi di antenne; problemi di radiazione; funzioni di Green; propagazione in spazio libero; collegamenti hertziani

•    Schiere di antenne    
    Introduzione alle schiere di antenne; metodi grafici; regola di Kraus
•    Diffrazione    
    Introduzione alla diffrazione, diffrazione da apertura circolare; ellissoidi di Fresnel

Esercitazione
•    Onde piane    
    Esercizi sulle onde piane in vari mezzi; problemi di riflessione e rifrazione; semplici problemi di propagazione guidata

•    propagazione    
    esercizi sulla propagazione EM

Laboratorio
•    Uso del calcolatore    
    Soluzione al calcolatore di semplici problemi elettromagnetici

•    Strumenti di misura    
    Esercitazione con un banco di misura didattico

•    antenne    
    Analisi al calcolatore delle proprieta' radiative di antenne e di schiere di antenne

MATERIALE DIDATTICO: TESTI CONSIGLIATI
•    G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000: Cap. 1, 2, 3, 4, 5, 6, 7, 9
•    A. Paraboni, Antenne, Mc Graw-Hill: Cap. 1, 2, Appendice A
•    J. D. Kraus, Antennas, Mc Graw-Hill: Cap. 1, 2 e 4
•    A. Paraboni, M. D'Amico, Mc Graw-Hill, Radiopropagazione, Appendice C
•    G. Conciauro, Fondamenti di onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    G. Conciauro, Introduzione alle onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    Appunti del docente su Antenne e Propagazione

CAMPI ELETTROMAGNETICI (ING-INF/02)
APPLIED ELECTROMAGNETICS

Degree course COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Subject area ING-INF/02

Course type Laurea Magistrale

Credits 9.0

Owner professor Luciano TARRICONE

Teaching hours Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 27.0

For matriculated on 2021/2022

Year taught 2022/2023

Course year 2

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Language INGLESE

Subject matter Telecom Applications (A181)

Location Lecce

In-depth knowledge of electromagnetic fields and microwaves

The course provides some examples of scientific and industrial applications of Electromagnetism, with particular emphasis to BioElectromagnetism, biomedical applications and intelligent wireless systems

Knowledge and understanding. During the course students will acquire the ability apply the theoretical knowledge of Electromagnetism and Microwaves to real cases

In particular, the main learning outcomes are:

* knowledge--wireless Systems and EM enabling technologies

* knowledge--electromagnetic compatibility problems,

* knowledge--Measurement Techniques and Instrumentations,

* laboratory experiments related to the scientific and industrial applications of electromagnetism.

Applying knowledge and understanding. After the course the student should be able to:

* deal with electromagnetic compatibility issues,

* solve complex problems involving electromagnetic technologies.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class. The goal is to ensure that at the end of the course students will be able to autonomously deal with electromagnetics problems.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with: electromagnetic compatibility problems, wireless and EM enabling technologies, measurements techniques.

Lectures, exercises for solving practical problems, computer exercises, laboratory exercises, seminars

Development and implementation of a practical project (verify the ability to solve practical problems) and oral exam (verify the ability to analyze, criticize, and present the course topics)

Please see the reference notes in the section related to the reference books/material to identify the materials to be studied for each part of the course’s program.

 

  • Introduction to the course [1]: Chapter 3, 4 and 5
  • Introduction to EMC [1]: Chapter 1
  •  BioEM

[2]: Chapter 1, 2, 3 and 4
[3]: Introduction, Chapter 1, 8 and 9

Professor's notes on EM Exposure Safety Standards and Laws

Three Professor's papers on BEM modelling
Professor's notes on numerical dosimetry
Professor's notes on classification of EM sources
Professor's notes on ELF fields emitted by Power lines and their reduction

[1], [4], Selected papers by (i) Hodgkin and Huxley, (ii) Colquhoun and Hawkes

 

  • Wireless Systems and EM enabling technologies

Professor's notes on Radiopropagation
Professor's notes on RFID
Professor's notes on new materials and technologies
[5]: Chapter 6
One Professor's paper on the convergence of EM Technologies towards IOT [6], [7]

 

  • Radar Systems for meteorology

Professor's notes [8], [9]

 

  • Shielding and Measurement Environments

[1]: Chapter 11
[11]: Chapter 5 and 6 [10], [11]

 

      -      Measurement Techniques and Instrumentations

              Professor's notes

Books:
[1] C. Paul, Electromagnetic Compatibility (EMC)
[2] J. Malmivuo, R. Plomsey, Bioelectromagnetics (BEM)
[3] C. Polk, E. Postow, CRC Handbook of Biological Effects of EM Fields
[4] B. Hille, Ionic Channels of Eccitable Membranes
[5] L. Tarricone, A. Esposito, Grid Computing for EM
[6] T. Rappaport, Wireless Communications
[7] K. Finkenzeller, D. Muller, RFID Handbook
[8] M. A. Richard, J. Scheer and W. Holm, Principles of Modern Radar
[9] R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations
[10] L. H. Hemming, EM Anechoic Chambers
[11] V. P. Kodali, Engineering EMC

APPLIED ELECTROMAGNETICS (ING-INF/02)
CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2022/2023

Anno di corso 2

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (8 hours)

Numerical methods for electromagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Microwave devices

Microwave resonators, dividers and couplers (3 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (18 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Scattering parameters measurements. Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (30 hours)

Project

How to solve a real problem. (16 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2022/2023

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Conoscenze di analisi matematica, fisica e teoria dei circuiti. Propedeuticità: Fisica II e Teoria dei Circuiti

Lo studente familiarizza con le nozioni di base di elettromagnetismo, e le loro principali applicazioni, come per esempio lo studio della propagazione elettromagnetica guidata e non, e le antenne.

  • Conoscenza e comprensione dei concetti di base dell’elettromagnetismo
  • Capacità di applicare le conoscenze sopra citate alla propagazione elettromagnetica e alle antenne

Lezioni frontali, esercitazioni per la soluzione di problemi pratici, esercitazioni al calcolatore, esercitazioni in laboratorio, seminari

Prova scritta (verificare la capacità di risolvere problemi pratici) e prova orale (verificare la capacità di analisi, critica, ed esposizione degli argomenti)

Introduzione al corso    
    Descrizione degli obiettivi del corso e richiami di analisi vettoriale, elettrostatica e magnetostatica.

•    Equazioni e teoremi fondamentali - 1    
    Equazioni fondamentali del campo elettromagnetico: Equazioni di Maxwell, Relazioni costitutive, Teoremi di Poynting, unicità, equivalenza, reciprocità.

•    Equazioni e teoremi fondamentali - 2    
    Equazioni nel dominio della frequenza: fasori, trasformata di Fourier, equazioni e teoremi fondamentali nel dominio della frequenza .

•    Onde piane    
    Equazione di Helmholtz, potenziali elettrodinamici, onde piane nello spazio libero, polarizzazione, onde piane in mezzi non dispersivi e dispersivi, velocità di gruppo.

•    Riflessione e rifrazione.    
    Caso di incidenza normale ed obliqua; incidenza su buon conduttore e metallo perfetto; onde evanescenti

•    La propagazione guidata    
    Formulazione del problema; modi TEM, TE e TM; il caso della guida rettangolare

•    Linee di trasmissione    
    Introduzione alle linee di trasmissione: Equazioni dei telegrafisti, impedenza, coefficiente di riflessione.

•    Antenne e propagazione    
    Introduzione al concetto di antenna; dipolo hertziano; parametri di antenne in trasmissione e ricezione; esempi di antenne; problemi di radiazione; funzioni di Green; propagazione in spazio libero; collegamenti hertziani

•    Schiere di antenne    
    Introduzione alle schiere di antenne; metodi grafici; regola di Kraus
•    Diffrazione    
    Introduzione alla diffrazione, diffrazione da apertura circolare; ellissoidi di Fresnel

Esercitazione
•    Onde piane    
    Esercizi sulle onde piane in vari mezzi; problemi di riflessione e rifrazione; semplici problemi di propagazione guidata

•    propagazione    
    esercizi sulla propagazione EM

Laboratorio
•    Uso del calcolatore    
    Soluzione al calcolatore di semplici problemi elettromagnetici

•    Strumenti di misura    
    Esercitazione con un banco di misura didattico

•    antenne    
    Analisi al calcolatore delle proprieta' radiative di antenne e di schiere di antenne

MATERIALE DIDATTICO: TESTI CONSIGLIATI
•    G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000: Cap. 1, 2, 3, 4, 5, 6, 7, 9
•    A. Paraboni, Antenne, Mc Graw-Hill: Cap. 1, 2, Appendice A
•    J. D. Kraus, Antennas, Mc Graw-Hill: Cap. 1, 2 e 4
•    A. Paraboni, M. D'Amico, Mc Graw-Hill, Radiopropagazione, Appendice C
•    G. Conciauro, Fondamenti di onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    G. Conciauro, Introduzione alle onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    Appunti del docente su Antenne e Propagazione

CAMPI ELETTROMAGNETICI (ING-INF/02)
CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2021/2022

Anno di corso 2

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (8 hours)

Numerical methods for electromagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Microwave devices

Microwave resonators, dividers and couplers (3 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (18 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Scattering parameters measurements. Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (30 hours)

Project

How to solve a real problem. (16 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2021/2022

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Conoscenze di analisi matematica, fisica e teoria dei circuiti. Propedeuticità: Fisica II e Teoria dei Circuiti

Lo studente familiarizza con le nozioni di base di elettromagnetismo, e le loro principali applicazioni, come per esempio lo studio della propagazione elettromagnetica guidata e non, e le antenne.

  • Conoscenza e comprensione dei concetti di base dell’elettromagnetismo
  • Capacità di applicare le conoscenze sopra citate alla propagazione elettromagnetica e alle antenne

Lezioni frontali, esercitazioni per la soluzione di problemi pratici, esercitazioni al calcolatore, esercitazioni in laboratorio, seminari

Prova scritta (verificare la capacità di risolvere problemi pratici) e prova orale (verificare la capacità di analisi, critica, ed esposizione degli argomenti)

Introduzione al corso    
    Descrizione degli obiettivi del corso e richiami di analisi vettoriale, elettrostatica e magnetostatica.

•    Equazioni e teoremi fondamentali - 1    
    Equazioni fondamentali del campo elettromagnetico: Equazioni di Maxwell, Relazioni costitutive, Teoremi di Poynting, unicità, equivalenza, reciprocità.

•    Equazioni e teoremi fondamentali - 2    
    Equazioni nel dominio della frequenza: fasori, trasformata di Fourier, equazioni e teoremi fondamentali nel dominio della frequenza .

•    Onde piane    
    Equazione di Helmholtz, potenziali elettrodinamici, onde piane nello spazio libero, polarizzazione, onde piane in mezzi non dispersivi e dispersivi, velocità di gruppo.

•    Riflessione e rifrazione.    
    Caso di incidenza normale ed obliqua; incidenza su buon conduttore e metallo perfetto; onde evanescenti

•    La propagazione guidata    
    Formulazione del problema; modi TEM, TE e TM; il caso della guida rettangolare

•    Linee di trasmissione    
    Introduzione alle linee di trasmissione: Equazioni dei telegrafisti, impedenza, coefficiente di riflessione.

•    Antenne e propagazione    
    Introduzione al concetto di antenna; dipolo hertziano; parametri di antenne in trasmissione e ricezione; esempi di antenne; problemi di radiazione; funzioni di Green; propagazione in spazio libero; collegamenti hertziani

•    Schiere di antenne    
    Introduzione alle schiere di antenne; metodi grafici; regola di Kraus
•    Diffrazione    
    Introduzione alla diffrazione, diffrazione da apertura circolare; ellissoidi di Fresnel

Esercitazione
•    Onde piane    
    Esercizi sulle onde piane in vari mezzi; problemi di riflessione e rifrazione; semplici problemi di propagazione guidata

•    propagazione    
    esercizi sulla propagazione EM

Laboratorio
•    Uso del calcolatore    
    Soluzione al calcolatore di semplici problemi elettromagnetici

•    Strumenti di misura    
    Esercitazione con un banco di misura didattico

•    antenne    
    Analisi al calcolatore delle proprieta' radiative di antenne e di schiere di antenne

MATERIALE DIDATTICO: TESTI CONSIGLIATI
•    G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000: Cap. 1, 2, 3, 4, 5, 6, 7, 9
•    A. Paraboni, Antenne, Mc Graw-Hill: Cap. 1, 2, Appendice A
•    J. D. Kraus, Antennas, Mc Graw-Hill: Cap. 1, 2 e 4
•    A. Paraboni, M. D'Amico, Mc Graw-Hill, Radiopropagazione, Appendice C
•    G. Conciauro, Fondamenti di onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    G. Conciauro, Introduzione alle onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    Appunti del docente su Antenne e Propagazione

CAMPI ELETTROMAGNETICI (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2021/2022

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market. Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed. "Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative

At the end of the course the student should be able to: - Apply the basic concepts of electromagnetism. - Set up high frequency device designs based on requirements. - Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas. - Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies

Frontal lessons, practical exercitations, laboratory activities

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1

(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity).

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2

(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3

(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

 

PART 4

(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

 

PART 5

(6 hours of scientific seminars)

Seminars from the business and research world. 

Main course book:

[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:

[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000

[3] A. Paraboni, Antenne, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2020/2021

Anno di corso 2

Semestre Primo Semestre (dal 23/09/2020 al 20/12/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (8 hours)

Numerical methods for electromagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Microwave devices

Microwave resonators, dividers and couplers (3 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (18 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Scattering parameters measurements. Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (30 hours)

Project

How to solve a real problem. (16 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAMPI ELETTROMAGNETICI

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 9.0

Docente titolare Luciano TARRICONE

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2020/2021

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Conoscenze di analisi matematica, fisica e teoria dei circuiti. Propedeuticità: Fisica II e Teoria dei Circuiti

Lo studente familiarizza con le nozioni di base di elettromagnetismo, e le loro principali applicazioni, come per esempio lo studio della propagazione elettromagnetica guidata e non, e le antenne.

  • Conoscenza e comprensione dei concetti di base dell’elettromagnetismo
  • Capacità di applicare le conoscenze sopra citate alla propagazione elettromagnetica e alle antenne

Lezioni frontali, esercitazioni per la soluzione di problemi pratici, esercitazioni al calcolatore, esercitazioni in laboratorio, seminari

Prova scritta (verificare la capacità di risolvere problemi pratici) e prova orale (verificare la capacità di analisi, critica, ed esposizione degli argomenti)

Introduzione al corso    
    Descrizione degli obiettivi del corso e richiami di analisi vettoriale, elettrostatica e magnetostatica.

•    Equazioni e teoremi fondamentali - 1    
    Equazioni fondamentali del campo elettromagnetico: Equazioni di Maxwell, Relazioni costitutive, Teoremi di Poynting, unicità, equivalenza, reciprocità.

•    Equazioni e teoremi fondamentali - 2    
    Equazioni nel dominio della frequenza: fasori, trasformata di Fourier, equazioni e teoremi fondamentali nel dominio della frequenza .

•    Onde piane    
    Equazione di Helmholtz, potenziali elettrodinamici, onde piane nello spazio libero, polarizzazione, onde piane in mezzi non dispersivi e dispersivi, velocità di gruppo.

•    Riflessione e rifrazione.    
    Caso di incidenza normale ed obliqua; incidenza su buon conduttore e metallo perfetto; onde evanescenti

•    La propagazione guidata    
    Formulazione del problema; modi TEM, TE e TM; il caso della guida rettangolare

•    Linee di trasmissione    
    Introduzione alle linee di trasmissione: Equazioni dei telegrafisti, impedenza, coefficiente di riflessione.

•    Antenne e propagazione    
    Introduzione al concetto di antenna; dipolo hertziano; parametri di antenne in trasmissione e ricezione; esempi di antenne; problemi di radiazione; funzioni di Green; propagazione in spazio libero; collegamenti hertziani

•    Schiere di antenne    
    Introduzione alle schiere di antenne; metodi grafici; regola di Kraus
•    Diffrazione    
    Introduzione alla diffrazione, diffrazione da apertura circolare; ellissoidi di Fresnel

Esercitazione
•    Onde piane    
    Esercizi sulle onde piane in vari mezzi; problemi di riflessione e rifrazione; semplici problemi di propagazione guidata

•    propagazione    
    esercizi sulla propagazione EM

Laboratorio
•    Uso del calcolatore    
    Soluzione al calcolatore di semplici problemi elettromagnetici

•    Strumenti di misura    
    Esercitazione con un banco di misura didattico

•    antenne    
    Analisi al calcolatore delle proprieta' radiative di antenne e di schiere di antenne

MATERIALE DIDATTICO: TESTI CONSIGLIATI
•    G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000: Cap. 1, 2, 3, 4, 5, 6, 7, 9
•    A. Paraboni, Antenne, Mc Graw-Hill: Cap. 1, 2, Appendice A
•    J. D. Kraus, Antennas, Mc Graw-Hill: Cap. 1, 2 e 4
•    A. Paraboni, M. D'Amico, Mc Graw-Hill, Radiopropagazione, Appendice C
•    G. Conciauro, Fondamenti di onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    G. Conciauro, Introduzione alle onde elettromagnetiche, Mc Graw-Hill: Esercizi svolti
•    Appunti del docente su Antenne e Propagazione

CAMPI ELETTROMAGNETICI (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2020/2021

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2021 al 05/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market. Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed. "Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative

At the end of the course the student should be able to: - Apply the basic concepts of electromagnetism. - Set up high frequency device designs based on requirements. - Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas. - Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies

Frontal lessons, practical exercitations, laboratory activities

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1

(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity).

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2

(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3

(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

 

PART 4

(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

 

PART 5

(6 hours of scientific seminars)

Seminars from the business and research world. 

Main course book:

[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:

[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000

[3] A. Paraboni, Antenne, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 12.0

Ripartizione oraria Ore totali di attività frontale: 108.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Primo Semestre (dal 23/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (8 hours)

Numerical methods for electromagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Microwave devices

Microwave resonators, dividers and couplers (3 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (18 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Scattering parameters measurements. Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (30 hours)

Project

How to solve a real problem. (16 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD AND LABORATORY OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente GIUSEPPINA MONTI: 9.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market. Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed. "Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative

At the end of the course the student should be able to: - Apply the basic concepts of electromagnetism. - Set up high frequency device designs based on requirements. - Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas. - Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies

Frontal lessons, practical exercitations, laboratory activities

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1

(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity).

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2

(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3

(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

 

PART 4

(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

 

PART 5

(6 hours of scientific seminars)

Seminars from the business and research world. 

Main course book:

[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:

[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000

[3] A. Paraboni, Antenne, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Primo Semestre (dal 24/09/2018 al 21/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

microwaves, electromagnetic field theory

The goal of this course is to provide the basic knoweledge of the main numerical techniques and software tools for the Computer Aided Design (CAD) of microwave circuits and antennas.  Through problem-solving and design activities, the course will introduce students to conventional passive microwave devices and antennas, as well as to cutting-edge electromagnetic technologies such as wireless power transfer, energy harvesting and metamaterials.

Knowledge and understanding.  During the course the students will acquire the ability to face and solve a generic problem of electromagnetism (design of microwave antennas / components, problems concerning human-antenna interaction, propagation in artificial media, etc.) using commercial or proprietary CAD tools.

In particular, the main learning outcomes are:

* knowledge of the major issues and possible technological solutions related to the design of microwave components and antennas,

* knowledge of the main numerical methods for electromagnetic problems,

* basic knowledge of common commercial software for circuital and full-wave electromagnetic simulations,

* laboratory experiments relative to at least one cutting-edge electromagnetic technology.

Applying knowledge and understanding. After the course the student should be able to:

* select the most suitable numerical method for solving a specific electromagnetic problem,

* use at least two commercial instruments (at least one simulator for the analysis of lumped elements circuits and one for full-wave simulations) for solving electromagnetism problems,

* apply the theoretical knowledge acquired during the course to the resolution of a real problem such as, for example, the design of an antenna or a microwave device that satisfies specific requirements.

 

Autonomy of judgment. Students are guided to critically learn everything that is explained to them in class, to compare the different methods for analyzing electromagnetic problems and the different design strategies of microwave devices and antennas. The goal is to ensure that at the end of the course students are able to identify and propose, in an autonomous way, the most efficient solution for solving an electromagnetism problem.

 

Communication skills. It is essential that students are able to communicate with a diverse and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the acquired methodological tools and their scientific knowledge.

In this regard, the course promotes the development of the following skills of the student: ability to expose in precise and formal terms the salient characteristics of a problem of electromagnetism; ability to describe and analyze an efficient solution for the problem under consideration.

Learning ability. Students must acquire the ability to deal with originality and autonomy, with the typical problems of the analysis and design of components and microwave antennas and in general of complex electromagnetic conditions. They must be able to re-elaborate and autonomously apply the knowledge and methods learned in view of a possible continuation of studies at a higher level (doctorate) or in the broader perspective of cultural and professional self-updating of lifelong learning.

The course consists of lectures, some of which make use of slides made available to students, laboratory lessons and the development of a project. The lectures are intended to deepen the theory of propagation in cylindrical structures and to expose the theory of the main numerical methods for the analysis of electromagnetic problems. The laboratory lessons are aimed at introducing students to the use of the main commercial software for the analysis and design of microwave circuits. Finally, the project aims to assess students' ability to face and solve a real problem.

Oral exam and development of a project concerning the design and/or the realization of a microwave device.

The objective of the oral exam is to verify the knowledge of the theory underlying: - the analysis of real cylindrical structures, - the main numerical methods for electromagnetism problems, - microstrip planar antennas, - the emerging technologies presented during the course

The objective of the project is to verify the student's ability to apply the theoretical skills acquired during the course to the solution of real problems.

Introduction

Introduction to numerical methods for electromagnetics, the computer aided design of microwave devices. (6 hours)

Cylindrical structures
Classification, propagation in open cylindrical structures, resolution methods for cylindrical structures with real conductors. (6 hours)

Numerical methods for electomagnetic problems 

The Finite Difference Time Domain (FDTD) numerical method; the Method of the Moments (MoM); the Mode-Matching. (15 hours)

Software tools for microwave circuit design

Commercial software tools for the design and optimization of microwave devices and antennas: introduction and classification of the most widely used commercial software (full-wave simulators and circuital simulators). (6 hours)

Antennas

Theory and applications of planar antennas. (6 hours)

Emerging technologies and design strategies for microwave circuits and antennas

Devices for energy harvesting and wireless power transfer; metamaterials; nanomaterials; design and realization of microwave devices on non conventional materials. (15 hours)

Laboratory

Design techniques for microwave passive devices (filters, resonators, couplers, antennas, etc.). Computer aided design of microwave devices and antennas: introduction to the use of some of the most widely adopted commercial software (CST Microwave Studio, AWR, etc.). (15 hours)

Project

How to solve a real problem. (12 hours)

[1] R. Collin, Foundations for Microwave Engineering, Mc Graw-Hill.

[2] Conciauro, Guglielmi, Sorrentino, Advanced Modal Analysis, Wiley.

[3] Peterson, Ray, Mittra, Computational Methods for Electromagnetics, IEEE Press.

[4] A. Paraboni, Antenne, Mc Graw-Hill, 1999.

[5] Johnson I. Agbinya, Wireless Power Transfer, 2nd edition.

[6] Alessandro Lipparini, Vittorio Rizzoli, Propagazione elettromagnetica guidata: parte prima.

[7] Girish Kumar, K.P. Ray, Broadband Microstrip Antennas, ISBN-13: 978-1580532440.

[8] Handouts provided by the teacher

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2017/2018

Anno di corso 2

Semestre Primo Semestre (dal 25/09/2017 al 22/12/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Primo Semestre (dal 26/09/2016 al 22/12/2016)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Primo Semestre (dal 21/09/2015 al 18/12/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)
CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Primo Semestre (dal 29/09/2014 al 13/01/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

CAD OF HIGH FREQUENCY CIRCUITS AND ANTENNAS (ING-INF/02)

Temi di ricerca

  • CAD di circuiti ed antenne ad alta frequenza basati sull'utilizzo di tecnologie di frontiera (metamateriali, nanotubi in carbonio, linee di trasmissione artificiali, sistemi micro-elettromeccanicietc);
  • analisi della propagazione di segnali a banda larga in mezzi con curva di dispersiona anomala;
  • sistemi rectenna per lo scavenging di segnali a microonde e per la conversione di dell'energia solare in corrente continua;
  • sistemi RFID;
  • design di antenne pe sistemi MIMO (antenne con frequenza di lavoro e/o digramma di radiazione riconfigurabile), antenna a banda larga, antenne con comportamanti multi-banda.
  • tecnologie per la trasmissione wireless di potenza e per l'energy harvesting.