Francesco PANELLA

Francesco PANELLA

Ricercatore Universitario

Settore Scientifico Disciplinare ING-IND/14: PROGETTAZIONE MECCANICA E COSTRUZIONE DI MACCHINE.

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7769 - Fax +39 0832 29 7768

Professore universitario di 2° fascia. Settore scientifico: Ing-Ind14 (Progettazione meccanica e meccanica sperimentale)

Area di competenza:

Costruzione di macchine

Meccanica sperimentale

Computer Aided Design

Tecnica delle costruzioni meccaniche

Calcolo e progetto di macchine

Experimental mechanics

Orario di ricevimento

Martedì e mercoledì, ore 10.30 - 14.00

Recapiti aggiuntivi

Tel. 0832 297769

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Titolo: Costruzione di Macchine

Obiettivi: Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per il dimensionamento dei principali organi delle macchine e lo studio dei sistemi meccanici in movimento. La progettazione dei componenti meccanici viene impostata innanzitutto presentando i requisiti funzionali richiesti ai vari componenti ed in base ai requisiti del materiale; successivamente vengono presentati gli utilizzi più comuni e le tecniche di calcolo consolidate, con esempi applicativi ed esercitazioni mirate.

Programma: In allegato nel Materiale Didattico

Modalità Esame: Esame orale di teoria, integrato con esercizi di calcolo scritti.

Ricevimento: Martedì ore 14.30-19.00

Testi consigliati:

 

Shigley J.E., Mischke C.R., Budynas R.G., Progetto e costruzione di macchine, McGraw-Hill

Appunti e dispense delle lezioni di Costruzione di Macchine

Juvinal R.C. - Marshek K.M., Fondamenti della progettazione dei componenti di macchine, ETS

Giovannozzi R., Costruzione di Macchine vol.1 e 2, Ed. Patron, Bologna

Titolo: Computer Aided Design

Obiettivi:

Il corso ha l’obiettivo di fornire agli allievi gli strumenti teorici e pratici per la rappresentazione grafica dei sistemi industriali, della componentistica meccanica e delle strutture. Si richiamano i fondamenti normativi del disegno tecnico e succesivamente si illutrano le tematiche essenziali per i sistemi CAD in azienda e di ausilio alla ricerca industriale. Si spiegano i concetti teorici di base ed i principi di funzionamento principali per i software più avanzati di modellazione dal 2D al 3D. Una buona parte del corso sarà effettuata in laboratorio con numerose esercitazioni pratiche in classe, arrivando ad elaborare progetti basati sulla modellazione degli asiemi più tipici, fino allo studio cinematico dei meccamismi ed alle tecniche di modellazione avanzata ed alla messa in tavola.

Programma: In allegato nel Materiale Didattico

Modalità Esame:

 

1.     Una prova di esame tramite esercizio di modellazione CAD, integrata da una verifica scritta di un argomento di teoria.

Elaborazione di esercitazioni e/o un progetto di gruppo, durante il corso.

Ricevimento: Martedì ore 14.30-19.00

Testi consigliati:

 

Appunti e dispense dalle lezioni

 

Didattica

A.A. 2023/2024

ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2021/2022

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSI COMUNE/GENERICO

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2022/2023

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE

Sede Lecce

A.A. 2022/2023

ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2020/2021

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2021/2022

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE

Sede Lecce

A.A. 2021/2022

ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2019/2020

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2020/2021

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE

Sede Lecce

A.A. 2020/2021

COSTRUZIONI DI MACCHINE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2018/2019

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2018/2019

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2019/2020

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE

Sede Lecce

A.A. 2019/2020

COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2017/2018

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPAZIALE

Sede Brindisi

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE

Sede Lecce

A.A. 2018/2019

COMPUTER AIDED DESIGN

Corso di laurea INGEGNERIA MECCANICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2016/2017

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

Torna all'elenco
ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2023/2024

Anno di corso 3

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Lingua

Percorso PERCORSI COMUNE/GENERICO (999)

La conoscenza dei contenuti del corso di Fisica I e Meccanica Razionale è fondamentale per una corretta comprensione degli argomenti

Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per determinare le condizioni di equilibrio delle strutture di tipo monodimensionale e per eseguire l’analisi delle sollecitazioni da cui tali strutture risultano essere interessate. Si forniscono inoltre i concetti base relativi al comportamento meccanico dei materiali, alla stabilità dell’equilibrio elastico, alle leggi costitutive dei materiali ed alle verifiche delle tensioni e deformazioni.

*Determinare le condizioni di equilibrio e le caratteristiche di sollecitazione di una struttura semplice formata da elementi monodimensionali tipo asta o trave.

*Calcolare lo stato di sollecitazione della sezione di un elemento trave ed eseguirne la relativa verifica statica.

*Determinare la deformata di una struttura sotto l’azione dei carichi.

*Eseguire la redazione di una relazione di calcolo relativa alla verifica di statica e di stabilità di una struttura .

Lezioni frontali, esercitazioni in classe ed a casa

L’esame consiste in una prova scritta seguita da una verifica orale dello stesso con domanda teorica.

Sono anche previsti esercizi individuali sotto forma di relazioni di calcolo su  strutture di esempio assegnate ovvero a scelta.

La prova scritta consiste in uno o più esercizi di calcolo e verifica delle sollecitazioni di una struttura. La validità dello scritto è di un anno.

La prova orale consiste nella discussione delle relazioni di calcolo e nella verifica di argomenti teorici affrontati durante il corso. Può essere previsto una prova di  esonero durante il corso.

na

1) Elementi di meccanica del continuo, stato delle tensioni e delle deformazioni. Sollecitazioni monoassiali e nel piano. Materiali isotropi ed elastici: relazioni costitutive e moduli tecnici.

Equilibrio elastico e statico dei corpi e delle strutture. Vincoli e reazioni vincolari. Analisi cinematica delle strutture: sistemi labili, isostatici, iperstatici. Equazioni di equilibrio dei sistemi strutturali e determinazione delle reazioni vincolari.

2) Geometria delle aree e delle sezioni;

Definizione e calcolo di baricentri, momenti statici, momenti d’inerzia.

3) Teoria della trave.

Definizione di trave. Definizione delle Caratteristiche della sollecitazione ed esempi di calcolo. Le travature reticolari. Esempi applicativi

4) Le sollecitazioni elementari:

Trazione e compressione. Flessione retta: formula di Navier. Cenni sulla flessione deviata. Sollecitazioni di Taglio: teoria approssimata di Jourawski. Torsione di sezioni circolari piene e cave. Formula di Bredt per le sezioni sottili.

5) La linea elastica:

Equazione differenziale della linea elastica e la relativa integrazione per sollecitazioni assiali e di flessione. Soluzione di strutture iperstatiche semplici. Esempi applicativi.

6) Principio di sovrapposizione degli effetti. Definizione delle Tensioni principali e direzioni principali, metodo del cerchio di Mohr. Metodi energetici, teoremi sul lavoro di deformazione, Cenni a Teorema di Betti e Castigliano. Definizione del principio dei lavori virtuali e applicazione alla risoluzione delle strutture semplici.

7) Proprietà meccaniche dei materiali: comportamento dei materiali duttili e fragili. Cenni sulla Prova di trazione: tensione di snervamento e rottura. Criteri di resistenza fondamentali ed applicazione pratica alla verifica di resistenza statica delle sezioni. Tensioni ammissibili e definizione del coefficiente di sicurezza

8) Criteri di resistenza ed esercitazioni di calcolo e progetto strutturale.

9) Cenni sull’instabilità elastica -Stabilità dell’equilibrio elastico di aste soggette a compressione: la formula di Eulero.

10) Esercitazioni di progetto e verifica delle travature nel piano e studio della resistenza delle sezioni più  comuni

 

Aurelio Somà, Fondamenti di meccanica strutturale, Quine, 2019

Beer – Johnston –Mazurek - Sanjeev, Meccanica dei Solidi-Elementi di scienza delle costruzioni, McGraw-Hill -2014

R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS.

Dispense delle lezioni.

ELEMENTI DI MECCANICA STRUTTURALE C.I. (ING-IND/14)
PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2023/2024

Anno di corso 2

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Lingua ITALIANO

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE (A43)

Sede Lecce

Nessuno

Il corso si articola in due parti. La prima si riferisce alla Meccanica sperimentale e prevede lezioni dei teoria per i metodi principali, applicati alle misure e monitoraggio nel campo della meccanica  industriale,per i quali seguirà un'ampia attività di laboratorio di misure ed analisi con attrezzature ed apparecchiature specifiche. Nella seconda parte si affrontano le tematiche di progettazione meccanica ed industriale tramite metodi numerici FEM. Dopo un breve richiamo teorico, si procede ad esercitazioni in classe ed a casa, di verifica e progettazione, miratea diversi casi di esempio, da eseguirsi nel laboratorio di calcolo, affrontando casi classici ed esempi di progettazione e verifica per componenti industriali in genere, con l'ausilio di software dedicato. Sono previste esercitazioni guidate sia singole che di gruppo

Preparare l'allievo nell'acquisire e padroneggiare i metodi e le procedura essenziali per il progetto in ambito industriale, facendo uso sia di tecniche sperimentali per la verifica delle strutture e dei componenti meccanici o aeronautici, sia delle tecniche numeriche FEM per il calcolo simulato delle sollecitazioni e del cimento nei componenti industriali e sugli elementi costruttivi delle macchine.

Lezioni forntali ed esercitazioni in laboratorio

Prova orale e prova scritta, coadiuvate dalle relazioni sulle esercitazioni di laboratorio

scritto ed orale

n.a.

I metodi seprimentali di misura ed analisi delle sollecitazioni: panoramica

Richiami suhli errori di misura e calibrazione degli strumenti di misura perle indicazioni di incertezza

Il metodo di analisi delle deformazioni e degli stress con estensimetri a resistenza. Teoria, esempi ed applicazioni in laboratorio.

Medoti termografici e termoelastici per controlli integrità ed analisi delle tensioni. Teoria, esempi ed applicazioni in laboratorio.

Metodi ultrasonori per controlli integrità di componenti critici industriali. Teoria, esempi ed applicazioni in laboratorio.

Metodi analisi e misura delle tensioni residue di origine tecnologica e non. Teoria, esempi ed applicazioni in laboratorio.

Metodi di campo per la misura di spostamenti e deformazioni nel piano su componenti meccanici, con tenciche di correlazione immagini

Cenni ai metodi ottici per lanalisi delle deformazioni sulla superficie dei componenti, basati sulla tecnica moireè.

Misure di resistenza, di spostamento locale e test meccanici di trazione e di affaticamento sui materiali, tramite strumenti specifici da laboratorio. Teoria, esempi ed applicazioni in laboratorio.

Il calcolo FEM: richiami di teoria ed introduzione alsoftware

Calcolo FEM di strutture unidimensionali e travature 3D. Esempi ed applicazioni in laboratorio.

Calcolo FEM di strutture a parete sottile assialsimettriche e non con elmenti a guscio. Esempi ed applicazioni in laboratorio.

Calcolonumerico di prodotti industriali di grande spessore forma complessa con elementi di volume. Esempi ed applicazioni in laboratorio.

Esercitaizoni FEM finali, basate su progetto di massima di elementi industriali in materiale metallico e composito.

"Meccanica sperimentale" Bray Vicentini - Levrotto & bella.

Dispense delle lezioni.

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE (ING-IND/14)
ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2022/2023

Anno di corso 3

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Lingua

Percorso PERCORSO COMUNE (999)

La conoscenza dei contenuti del corso di Fisica I e Meccanica Razionale è fondamentale per una corretta comprensione degli argomenti

Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per determinare le condizioni di equilibrio delle strutture di tipo monodimensionale e per eseguire l’analisi delle sollecitazioni da cui tali strutture risultano essere interessate. Si forniscono inoltre i concetti base relativi al comportamento meccanico dei materiali, alla stabilità dell’equilibrio elastico, alle leggi costitutive dei materiali ed alle verifiche delle tensioni e deformazioni.

*Determinare le condizioni di equilibrio e le caratteristiche di sollecitazione di una struttura semplice formata da elementi monodimensionali tipo asta o trave.

*Calcolare lo stato di sollecitazione della sezione di un elemento trave ed eseguirne la relativa verifica statica.

*Determinare la deformata di una struttura sotto l’azione dei carichi.

*Eseguire la redazione di una relazione di calcolo relativa alla verifica di statica e di stabilità di una struttura .

Lezioni frontali, esercitazioni in classe ed a casa

L’esame consiste in una prova scritta seguita da una verifica orale dello stesso con domanda teorica.

Sono anche previsti esercizi individuali sotto forma di relazioni di calcolo su  strutture di esempio assegnate ovvero a scelta.

La prova scritta consiste in uno o più esercizi di calcolo e verifica delle sollecitazioni di una struttura. La validità dello scritto è di un anno.

La prova orale consiste nella discussione delle relazioni di calcolo e nella verifica di argomenti teorici affrontati durante il corso. Può essere previsto una prova di  esonero durante il corso.

na

1) Elementi di meccanica del continuo, stato delle tensioni e delle deformazioni. Sollecitazioni monoassiali e nel piano. Materiali isotropi ed elastici: relazioni costitutive e moduli tecnici.

Equilibrio elastico e statico dei corpi e delle strutture. Vincoli e reazioni vincolari. Analisi cinematica delle strutture: sistemi labili, isostatici, iperstatici. Equazioni di equilibrio dei sistemi strutturali e determinazione delle reazioni vincolari.

2) Geometria delle aree e delle sezioni;

Definizione e calcolo di baricentri, momenti statici, momenti d’inerzia.

3) Teoria della trave.

Definizione di trave. Definizione delle Caratteristiche della sollecitazione ed esempi di calcolo. Le travature reticolari. Esempi applicativi

4) Le sollecitazioni elementari:

Trazione e compressione. Flessione retta: formula di Navier. Cenni sulla flessione deviata. Sollecitazioni di Taglio: teoria approssimata di Jourawski. Torsione di sezioni circolari piene e cave. Formula di Bredt per le sezioni sottili.

5) La linea elastica:

Equazione differenziale della linea elastica e la relativa integrazione per sollecitazioni assiali e di flessione. Soluzione di strutture iperstatiche semplici. Esempi applicativi.

6) Principio di sovrapposizione degli effetti. Definizione delle Tensioni principali e direzioni principali, metodo del cerchio di Mohr. Metodi energetici, teoremi sul lavoro di deformazione, Cenni a Teorema di Betti e Castigliano. Definizione del principio dei lavori virtuali e applicazione alla risoluzione delle strutture semplici.

7) Proprietà meccaniche dei materiali: comportamento dei materiali duttili e fragili. Cenni sulla Prova di trazione: tensione di snervamento e rottura. Criteri di resistenza fondamentali ed applicazione pratica alla verifica di resistenza statica delle sezioni. Tensioni ammissibili e definizione del coefficiente di sicurezza

8) Criteri di resistenza ed esercitazioni di calcolo e progetto strutturale.

9) Cenni sull’instabilità elastica -Stabilità dell’equilibrio elastico di aste soggette a compressione: la formula di Eulero.

10) Esercitazioni di progetto e verifica delle travature nel piano e studio della resistenza delle sezioni più  comuni

 

Aurelio Somà, Fondamenti di meccanica strutturale, Quine, 2019

Beer – Johnston –Mazurek - Sanjeev, Meccanica dei Solidi-Elementi di scienza delle costruzioni, McGraw-Hill -2014

R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS.

Dispense delle lezioni.

ELEMENTI DI MECCANICA STRUTTURALE C.I. (ING-IND/14)
PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2022/2023

Anno di corso 2

Semestre Primo Semestre (dal 19/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE (A43)

Sede Lecce

Nessuno

Il corso si articola in due parti. La prima si riferisce alla Meccanica sperimentale e prevede lezioni dei teoria per i metodi principali, applicati alle misure e monitoraggio nel campo della meccanica  industriale,per i quali seguirà un'ampia attività di laboratorio di misure ed analisi con attrezzature ed apparecchiature specifiche. Nella seconda parte si affrontano le tematiche di progettazione meccanica ed industriale tramite metodi numerici FEM. Dopo un breve richiamo teorico, si procede ad esercitazioni in classe ed a casa, di verifica e progettazione, miratea diversi casi di esempio, da eseguirsi nel laboratorio di calcolo, affrontando casi classici ed esempi di progettazione e verifica per componenti industriali in genere, con l'ausilio di software dedicato. Sono previste esercitazioni guidate sia singole che di gruppo

Preparare l'allievo nell'acquisire e padroneggiare i metodi e le procedura essenziali per il progetto in ambito industriale, facendo uso sia di tecniche sperimentali per la verifica delle strutture e dei componenti meccanici o aeronautici, sia delle tecniche numeriche FEM per il calcolo simulato delle sollecitazioni e del cimento nei componenti industriali e sugli elementi costruttivi delle macchine.

Lezioni forntali ed esercitazioni in laboratorio

Prova orale e prova scritta, coadiuvate dalle relazioni sulle esercitazioni di laboratorio

scritto ed orale

n.a.

I metodi seprimentali di misura ed analisi delle sollecitazioni: panoramica

Richiami suhli errori di misura e calibrazione degli strumenti di misura perle indicazioni di incertezza

Il metodo di analisi delle deformazioni e degli stress con estensimetri a resistenza. Teoria, esempi ed applicazioni in laboratorio.

Medoti termografici e termoelastici per controlli integrità ed analisi delle tensioni. Teoria, esempi ed applicazioni in laboratorio.

Metodi ultrasonori per controlli integrità di componenti critici industriali. Teoria, esempi ed applicazioni in laboratorio.

Metodi analisi e misura delle tensioni residue di origine tecnologica e non. Teoria, esempi ed applicazioni in laboratorio.

Metodi di campo per la misura di spostamenti e deformazioni nel piano su componenti meccanici, con tenciche di correlazione immagini

Cenni ai metodi ottici per lanalisi delle deformazioni sulla superficie dei componenti, basati sulla tecnica moireè.

Misure di resistenza, di spostamento locale e test meccanici di trazione e di affaticamento sui materiali, tramite strumenti specifici da laboratorio. Teoria, esempi ed applicazioni in laboratorio.

Il calcolo FEM: richiami di teoria ed introduzione alsoftware

Calcolo FEM di strutture unidimensionali e travature 3D. Esempi ed applicazioni in laboratorio.

Calcolo FEM di strutture a parete sottile assialsimettriche e non con elmenti a guscio. Esempi ed applicazioni in laboratorio.

Calcolonumerico di prodotti industriali di grande spessore forma complessa con elementi di volume. Esempi ed applicazioni in laboratorio.

Esercitaizoni FEM finali, basate su progetto di massima di elementi industriali in materiale metallico e composito.

"Meccanica sperimentale" Bray Vicentini - Levrotto & bella.

Dispense delle lezioni.

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE (ING-IND/14)
ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2021/2022

Anno di corso 3

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Lingua

Percorso PERCORSO COMUNE (999)

ELEMENTI DI MECCANICA STRUTTURALE C.I. (ING-IND/14)
PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2021/2022

Anno di corso 2

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Lingua ITALIANO

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE (A43)

Sede Lecce

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE (ING-IND/14)
COSTRUZIONI DI MACCHINE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2020/2021

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Disegno tecnico, Fisica I

Metodi classici di progettazione per componenti industriali ed applicazioni su elementi costruttivi della macchine di varia tipologia

Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per il dimensionamento dei principali organi delle macchine e lo studio dei sistemi meccanici in movimento. La progettazione dei componenti meccanici viene impostata innanzitutto presentando i requisiti funzionali richiesti ai vari componenti ed in base ai requisiti del materiale; successivamente vengono presentati gli utilizzi più comuni e le tecniche di calcolo consolidate, con esempi applicativi ed esercitazioni mirate.

Lezioni frontali ed esercitazioni scritte guidate in aula

Prova Scritta ed orale. Occasionalmente si eseguiranno degli esoneri durante il corso

Appello scritto con integrazioneorale

na

Introduzione alla progettazione meccanica. Nomenclatura e definizioni dei principali organi di macchine.

Richiami di calcolo delle sollecitazioni: definizione di tensione, sollecitazioni elementari, criteri di resistenza dei materiali per l’ingegneria. Richiami sui materiali per impiego meccanico.

L’effetto di intaglio ed intensificazione delle tensioni. Cenni sulla resistenza a fatica dei materiali, modalità di rottura e criteri di base per la verifica di durata.

I collegamenti filettati: geometria delle filettature; viti per organi di manovra: dimensionamento cinematico e verifica di resistenza; impiego delle filettature per i collegamenti: sollecitazioni di trazione, torsione e flessione; relazione tra coppia di serraggio e pre-carico; effetto dei carichi esterni di taglio e trazione su un collegamento filettato.

Richiami dui Collegamenti mozzo-albero: collegamenti per attrito e con superfici coniche, dimensionamento chiavette, linguette e scanalati; calcolo del forzamento mozzo-albero.

Collegamenti fissi: cenni alle chiodature e rivettature; le saldature: definizioni,  classificazione e calcolo delle sollecitazioni statiche nelle saldature a cordoni d’angolo e di testa, a completa penetrazione e con riferimento alle norme.

Assi e alberi: dimensionamento a flesso-torsione di alberi rotanti,  verifica delle deformazioni ammissibili.

Esercizi di esempio per la verifca di assi ed alberi rotanti per applicazioni meccaniche.

Organi di trasmissione del moto: Richiami sulle ruote dentate cilindriche a denti diritti, elicoidali e coniche: approssimazione di Tredgold, geometria e condizioni di interferenza; calcolo delle forze scambiate con verifica di resistenza delle ruote dentate: formula di Lewis e verifica all’usura sulla base delle pressioni di contatto hertziano; cenni al dimensionamento secondo la norma AGMA.

Esercizi mirati per la progettazione e verifica di ingranaggi tipicamente usati nella meccanica.

Cuscinetti volventi: classificazione, definizioni e geometria; scelta e calcolo dei cuscinetti; indicazioni per il montaggio dei cuscinetti ed esempi applicativi.

Esercitazini sulla progettazione di assiemi meccanici semplici nelle macchine industriali di esempio con alberi, cuscinetti, collegamenti e verifica della trasmissione del moto.

Analisi delle sollecitazioni negli elementi elastici: dimensionamento di molle di trazione, flessione e barra di torsione; esercizi applicativi in classe.

 

[1] De Paulis A., Manfredi E., Costruzione di Macchine, Pearson, 2012

[2] Shigley J.E., Mischke C.R., Budynas R.G., Progetto e costruzione di macchine, McGraw-Hill

[3] Atzori B., Appunti di Costruzione di Macchine, Ediz. Cortina, Padova

[4] Juvinal R.C. - Marshek K.M., Fondamenti della progettazione dei componenti di macchine, ETS

[5] Giovannozzi R., Costruzione di Macchine vol.1 e 2, Ed. Patron, Bologna

COSTRUZIONI DI MACCHINE C.I. (ING-IND/14)
ELEMENTI DI MECCANICA STRUTTURALE C.I.

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2020/2021

Anno di corso 3

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

La conoscenza dei contenuti del corso di Fisica I e Meccanica Razionale è fondamentale per una corretta comprensione degli argomenti

Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per determinare le condizioni di equilibrio delle strutture di tipo monodimensionale e per eseguire l’analisi delle sollecitazioni da cui tali strutture risultano essere interessate. Si forniscono inoltre i concetti base relativi al comportamento meccanico dei materiali, alla stabilità dell’equilibrio elastico, alle leggi costitutive dei materiali ed alle verifiche delle tensioni e deformazioni.

*Determinare le condizioni di equilibrio e le caratteristiche di sollecitazione di una struttura semplice formata da elementi monodimensionali tipo asta o trave.

*Calcolare lo stato di sollecitazione della sezione di un elemento trave ed eseguirne la relativa verifica statica.

*Determinare la deformata di una struttura sotto l’azione dei carichi.

*Eseguire la redazione di una relazione di calcolo relativa alla verifica di statica e di stabilità di una struttura .

Lezioni frontali, esercitazioni in classe ed a casa

L’esame consiste in una prova scritta seguita da una prova orale.

Sono anche previsti esercizi individuali sotto forma di relazioni di calcolo su  strutture di esempio assegnate ovvero a scelta.

La prova scritta consiste in uno o più esercizi di calcolo e verifica delle sollecitazioni di una struttura. La validità dello scritto è di un anno.

La prova orale consiste nella discussione delle relazioni di calcolo e nella verifica di argomenti teorici affrontati durante il corso. Può essere previsto una prova di  esonero durante il corso.

na

1) Elementi di meccanica del continuo, stato delle tensioni e delle deformazioni. Sollecitazioni monoassiali e nel piano. Materiali isotropi ed elastici: relazioni costitutive e moduli tecnici.

Equilibrio elastico e statico dei corpi e delle strutture. Vincoli e reazioni vincolari. Analisi cinematica delle strutture: sistemi labili, isostatici, iperstatici. Equazioni di equilibrio dei sistemi strutturali e determinazione delle reazioni vincolari.

2) Geometria delle aree e delle sezioni;

Definizione e calcolo di baricentri, momenti statici, momenti d’inerzia.

3) Teoria della trave.

Definizione di trave. Definizione delle Caratteristiche della sollecitazione ed esempi di calcolo. Le travature reticolari. Esempi applicativi

4) Le sollecitazioni elementari:

Trazione e compressione. Flessione retta: formula di Navier. Cenni sulla flessione deviata. Sollecitazioni di Taglio: teoria approssimata di Jourawski. Torsione di sezioni circolari piene e cave. Formula di Bredt per le sezioni sottili.

5) La linea elastica:

Equazione differenziale della linea elastica e la relativa integrazione per sollecitazioni assiali e di flessione. Soluzione di strutture iperstatiche semplici. Esempi applicativi.

6) Principio di sovrapposizione degli effetti. Definizione delle Tensioni principali e direzioni principali, metodo del cerchio di Mohr. Metodi energetici, teoremi sul lavoro di deformazione, Teorema di Betti e Castigliano. Definizione del principio dei lavori virtuali e applicazione alla risoluzione delle strutture semplici.

7) Proprietà meccaniche dei materiali: comportamento dei materiali duttili e fragili. Cenni sulla Prova di trazione: tensione di snervamento e rottura. Criteri di resistenza fondamentali ed applicazione pratica alla verifica di resistenza statica delle sezioni. Tensioni ammissibili e definizione del coefficiente di sicurezza

8) Cenni sul calcolo matriciale delle strutture. Definizione del metodo degli spostamenti e delle forze, formulazione degli elementi asta e trave. Matrici di orientamento e di congruenza ed Assemblaggio della matrice di rigidezza globale.

9) Cenni sull’instabilità elastica -Stabilità dell’equilibrio elastico di aste soggette a compressione: la formula di Eulero.

10) Esercitazioni di progetto e verifica delle travature nel piano e studio della resistenza delle sezioni più  comuni

 

Aurelio Somà, Fondamenti di meccanica strutturale, Quine, 2019

Beer – Johnston –Mazurek - Sanjeev, Meccanica dei Solidi-Elementi di scienza delle costruzioni, McGraw-Hill -2014

R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS.

Dispense delle lezioni.

ELEMENTI DI MECCANICA STRUTTURALE C.I. (ING-IND/14)
PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2020/2021

Anno di corso 2

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Lingua ITALIANO

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE (A43)

Sede Lecce

NEssuno

Il corso si articola in due parti. La prima si riferisce alla MEccanica sperimentale e prevede lezioni dei teoria dei metodi princncipali per la meccanica sperimentale industriale, alle quali seguirà un'ampia attività di laboratorio di misure ed analisi con attrezzature ed apparecchiature specifiche.Nella seconda parte si affrontano le tematiche di progettazione meccanica ed indistriale tramite metodi numerici FEM. Dopo una breve introduzione con richiami teorici, si procede ad esercitazioni di progetto mirate da eseguirsi nel laboratorio di calcolo, affrontando casi classici ed esempi di progettazione e verifica per componenti industriali, con l'ausilio di software dedicato. Sono previste esercitazioni guidate sia singole che di gruppo

Preparare l'allievo nell'acquisire e padroneggiare i metodi e le procedura essenziali per il progetto in ambito industriale, facendo uso sia di tecniche sperimentali per la verifica delle strutture e dei componenti meccanici, sia delle tecniche numeriche FEM per il calcolo simulato delle sollecitazioni e del cimento nei componenti indutriali e sugli elementi costruttivi delle macchine

Lezioni forntali ed esercitazioni in laboratorio

Prova orale e prova scritta, coadiuvate dalle relazioni sulle esercitazioni di laboratorio

scritto ed orale

n.a.

I metodi seprimentali di misura ed analisi delle sollecitazioni: panoramica

Richiami suhli errori di misura e calibrazione degli strumenti di misura perle indicazioni di incertezza

Il metodo di analisi delle deformazioni e degli stress con estensimetri a resistenza. Teoria, esempi ed applicazioni in laboratorio.

Medoti termografici e termoelastici per controlli integrità ed analisi delle tensioni. Teoria, esempi ed applicazioni in laboratorio.

Metodi ultrasonori per controlli integrità di componenti critici industriali. Teoria, esempi ed applicazioni in laboratorio.

Metodi analisi e misura delle tensioni residue di origine tecnologica e non. Teoria, esempi ed applicazioni in laboratorio.

Metodi di campo per la misura di spostamenti e deformazioni nel piano su componenti meccanici, con tenciche di correlazione immagini

Cenni ai metodi ottici per lanalisi delle deformazioni sulla superficie dei componenti, basati sulla tecnica moireè.

Misure di resistenza, di spostamento locale e test meccanici di trazione e di affaticamento sui materiali, tramite strumenti specifici da laboratorio. Teoria, esempi ed applicazioni in laboratorio.

Il calcolo FEM: richiami di teoria ed introduzione alsoftware

Calcolo FEM di strutture unidimensionali e travature 3D. Esempi ed applicazioni in laboratorio.

Calcolo FEM di strutture a parete sottile assialsimettriche e non con elmenti a guscio. Esempi ed applicazioni in laboratorio.

Calcolonumerico di prodotti industriali di grande spessore forma complessa con elementi di volume. Esempi ed applicazioni in laboratorio.

Esercitaizoni FEM finali, basate su progetto di massima di elementi industriali in materiale metallico e composito.

"Meccanica sperimentale" Bray Vicentini - Levrotto & bella.

Dispense delle lezioni.

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE (ING-IND/14)
COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2019/2020

Anno di corso 3

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Lingua ITALIANO

Percorso CURRICULUM AEROSPAZIALE (A93)

Sede Brindisi

Metodi classici di progettazione per componenti industriali ed applicazioni su elementi costruttivi della macchine di varia tipologia

Il corso ha l’obiettivo di fornire gli strumenti teorici e pratici per il dimensionamento dei principali organi delle macchine e lo studio dei sistemi meccanici in movimento. La progettazione dei componenti meccanici viene impostata innanzitutto presentando i requisiti funzionali richiesti ai vari componenti ed in base ai requisiti del materiale; successivamente vengono presentati gli utilizzi più comuni e le tecniche di calcolo consolidate, con esempi applicativi ed esercitazioni mirate.

Lezioni frontali ed esercitazioni scritte guidate in aula

Introduzione alla progettazione meccanica. Nomenclatura e definizioni dei principali organi di macchine.

Richiami di calcolo delle sollecitazioni: definizione di tensione, sollecitazioni elementari, criteri di resistenza dei materiali per l’ingegneria. Richiami sui materiali per impiego meccanico.

L’effetto di intaglio ed intensificazione delle tensioni. Cenni sulla resistenza a fatica dei materiali, modalità di rottura e criteri di base per la verifica di durata.

I collegamenti filettati: geometria delle filettature; viti per organi di manovra: dimensionamento cinematico e verifica di resistenza; impiego delle filettature per i collegamenti: sollecitazioni di trazione, torsione e flessione; relazione tra coppia di serraggio e pre-carico; effetto dei carichi esterni di taglio e trazione su un collegamento filettato.

Richiami dui Collegamenti mozzo-albero: collegamenti per attrito e con superfici coniche, dimensionamento chiavette, linguette e scanalati; calcolo del forzamento mozzo-albero.

Collegamenti fissi: cenni alle chiodature e rivettature; le saldature: definizioni,  classificazione e calcolo delle sollecitazioni statiche nelle saldature a cordoni d’angolo e di testa, a completa penetrazione e con riferimento alle norme.

Assi e alberi: dimensionamento a flesso-torsione di alberi rotanti,  verifica delle deformazioni ammissibili.

Esercizi di esempio per la verifca di assi ed alberi rotanti per applicazioni meccaniche.

Organi di trasmissione del moto: Richiami sulle ruote dentate cilindriche a denti diritti, elicoidali e coniche: approssimazione di Tredgold, geometria e condizioni di interferenza; calcolo delle forze scambiate con verifica di resistenza delle ruote dentate: formula di Lewis e verifica all’usura sulla base delle pressioni di contatto hertziano; cenni al dimensionamento secondo la norma AGMA.

Esercizi mirati per la progettazione e verifica di ingranaggi tipicamente usati nella meccanica.

Cuscinetti volventi: classificazione, definizioni e geometria; scelta e calcolo dei cuscinetti; indicazioni per il montaggio dei cuscinetti ed esempi applicativi.

Esercitazini sulla progettazione di assiemi meccanici semplici nelle macchine industriali di esempio con alberi, cuscinetti, collegamenti e verifica della trasmissione del moto.

Analisi delle sollecitazioni negli elementi elastici: dimensionamento di molle di trazione, flessione e barra di torsione; esercizi applicativi in classe.

 

COSTRUZIONE DI MACCHINE (ING-IND/14)
PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Primo Semestre (dal 23/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso PROGETTAZIONE E PRODUZIONE INDUSTRIALE (A43)

Sede Lecce

NEssuno

Il corso di srticolain due parti. La prima si riferisce alla MEccanica sperimentale e prevede lezioni dei teoria dei metodi princncipali per la meccanica sperimentale industriale, alle quali seguirà un'ampia attività di laboratorio di misure ed analisi con attrezzature ed apparecchiature specifiche.Nella seconda parte si affrontano le tematiche di progettazione meccanica ed indistriale tramite metodi numerici FEM. Dopo una breve introduzione con richiami teorici, si procede ad esercitazioni di progetto mirate da eseguirsi nel laboratorio di calcolo, affrontando casi classici ed esempi di progettazione e verifica per componenti industriali, con l'ausilio di software dedicato. Sono previste esercitazioni guidate sia singole che di gruppo

Preparare l'allievo nell'acquisire e padroneggiare i metodi e le procedura essenziali per il progetto in ambito industriale, facendo uso sia di tecniche sperimentali per la verifica delle strutture e dei componenti meccanici, sia delle tecniche numeriche FEM per il calcolo simulato delle sollecitazioni e del cimento nei componenti indutriali e sugli elementi costruttivi delle macchine

Lezioni forntali ed esercitazioni in laboratorio

Prova orale e prova scritta, coadiuvate dalle relazioni sulle esercitazioni di laboratorio

I metodi seprimentali di misura ed analisi delle sollecitazioni: panoramica

Richiami suhli errori di misura e calibrazione degli strumenti di misura perle indicazioni di incertezza

Il metodo di analisi delle deformazioni e degli stress con estensimetri a resistenza. Teoria, esempi ed applicazioni in laboratorio.

Medoti termografici e termoelastici per controlli integrità ed analisi delle tensioni. Teoria, esempi ed applicazioni in laboratorio.

Metodi ultrasonori per controlli integrità di componenti critici industriali. Teoria, esempi ed applicazioni in laboratorio.

Metodi analisi e misura delle tensioni residue di origine tecnologica e non. Teoria, esempi ed applicazioni in laboratorio.

Metodi di campo per la misura di spostamenti e deformazioni nel piano su componenti meccanici, con tenciche di correlazione immagini

Cenni ai metodi ottici per lanalisi delle deformazioni sulla superficie dei componenti, basati sulla tecnica moireè.

Misure di resistenza, di spostamento locale e test meccanici di trazione e di affaticamento sui materiali, tramite strumenti specifici da laboratorio. Teoria, esempi ed applicazioni in laboratorio.

Il calcolo FEM: richiami di teoria ed introduzione alsoftware

Calcolo FEM di strutture unidimensionali e travature 3D. Esempi ed applicazioni in laboratorio.

Calcolo FEM di strutture a parete sottile assialsimettriche e non con elmenti a guscio. Esempi ed applicazioni in laboratorio.

Calcolonumerico di prodotti industriali di grande spessore forma complessa con elementi di volume. Esempi ed applicazioni in laboratorio.

Esercitaizoni FEM finali, basate su progetto di massima di elementi industriali in materiale metallico e composito.

PROGETTAZIONE ASSISTITA E MECCANICA SPERIMENTALE (ING-IND/14)
COMPUTER AIDED DESIGN

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

COMPUTER AIDED DESIGN (ING-IND/15)
COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2018/2019

Anno di corso 3

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

COSTRUZIONE DI MACCHINE (ING-IND/14)
COMPUTER AIDED DESIGN

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

COMPUTER AIDED DESIGN (ING-IND/15)
COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2017/2018

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

COSTRUZIONE DI MACCHINE (ING-IND/14)
COMPUTER AIDED DESIGN

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2016/2017

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

COMPUTER AIDED DESIGN (ING-IND/15)
COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2016/2017

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

COSTRUZIONE DI MACCHINE (ING-IND/14)
COMPUTER AIDED DESIGN

Corso di laurea INGEGNERIA MECCANICA

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Docente titolare Francesco PANELLA

Ripartizione oraria Ore totali di attività frontale: 81.0

  Ore erogate dal docente Francesco PANELLA: 27.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2015/2016

Anno di corso 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

COMPUTER AIDED DESIGN (ING-IND/15)
COMPUTING AND MECHANICAL DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/15

Course type Laurea Magistrale

Credits 9.0

Owner professor Francesco PANELLA

Teaching hours Ore totali di attività frontale: 81.0

  Ore erogate dal docente Francesco PANELLA: 12.0

For matriculated on 2015/2016

Year taught 2015/2016

Course year 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Brindisi

COMPUTING AND MECHANICAL DESIGN (ING-IND/15)
COSTRUZIONE DI MACCHINE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/14

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2015/2016

Anno di corso 3

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

COSTRUZIONE DI MACCHINE (ING-IND/14)
DISEGNO TECNICO INDUSTRIALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

DISEGNO TECNICO INDUSTRIALE (ING-IND/15)
DISEGNO TECNICO INDUSTRIALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/15

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

DISEGNO TECNICO INDUSTRIALE (ING-IND/15)