Fabrizio, Antonio DURANTE

Fabrizio, Antonio DURANTE

Professore I Fascia (Ordinario/Straordinario)

Settore Scientifico Disciplinare SECS-S/06: METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE.

Dipartimento di Scienze dell'Economia

Centro Ecotekne Pal. C - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 8672

Professore Ordinario in Metodi Matematici dell'Economia e delle Scienze Attuariali e Finanziarie (SSD: SECS-S/06)

Full Professor in Mathematical Methods of Economics, Finance and Actuarial Sciences

Area di competenza:

Research Interests: Applied Mathematics, Dependence Models, Quantitative Risk Management, Classification and Data Analysis, Decision Sciences

 

Orario di ricevimento

Sino a nuove disposizioni, il ricevimento studenti si terrà  lunedì dalle 11 alle 12 e martedì dalle 11 alle 12 in modalità telematica attraverso la piattaforma Microsoft Teams. Per prenotarsi, contattare il docente via e-mail.

Recapiti aggiuntivi

Studio: Centro Ecotekne, palazzina C, primo piano.

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Fabrizio Durante is Full Professor in Mathematical Methods of Economics, Finance and Actuarial Sciences at University of Salento in Lecce (Italy).

He studied at the University of Lecce, Italy, where he has obtained his doctoral degree in Mathematics. After doctoral studies, he worked at the Johannes Kepler University Linz (2006–2010), Austria, where he has obtained the habilitation in Mathematics in 2010. Then, he has been Assistant Professor for Statistics (2010-2014) and Associate Professor for Statistics (2015-2016) at Free University of Bozen–Bolzano in Italy.
 

His research activities focus on the fields of dependence and copula models, with particular emphasis on applications in quantitative risk management, reliability theory, environmental science and fuzzy sets. He has published 80 scientific articles in peer-reviewed journals (with impact factor), and other articles in peer-review volumes and conference proceedings. He has written with Carlo Sempi the book “Principles of Copula Theory”, which is published by CRC/Chapman & Hall. Moreover, he also co-edited four books devoted to various aspects of multivariate stochastic models and their applications.
 

Currently, he is associate editor of the journal “Computational Statistics & Data Analysis” by Elsevier, “Dependence Modeling” by De Gruyter, “Fuzzy Sets & Systems” by Elsevier, “International Journal of Approximate Reasoning” by Elsevier, and “Statistical Methods & Applications” by Springer. He is the chair of the specialized team on “Dependence Models and Copulas” of the ERCIM Working Group on Computational and Methodological Statistics.

 

He is national coordinator of the project ``Stochastic Models for Complex Systems'' (2019-2021) by Italian MIUR (PRIN 2017). Moreover, he is MC Substitute for Italy for the project ``DAMOCLES - Understanding and modeling compound climate and weather events'' (Cost Action CA17109). He has got the STAHY Best Paper Award 2015 (jointly with G. Salvadori and C. De Michele) from the International Commission on Statistical Hydrology (ICSH-IAHS) of the International Association of Hydrological Sciences.

Fabrizio Durante has been invited as plenary speaker in several international conferences, especially in the area of dependence models for finance and insurance. Moreover, he has been member of the scientific committee of several international conferences, as well as organizer of various scientific events and invited sessions.

His teaching activities mainly have included mathematical/statistical courses at bachelor, master and PhD level. He also gave short specialized courses on copulas and risk management.

Didattica

A.A. 2020/2021

BUSINESS ANALYTICS

Degree course MANAGEMENT DIGITALE

Course type Laurea

Language INGLESE

Credits 6.0

Teaching hours Ore Attività frontale: 36.0

Year taught 2020/2021

For matriculated on 2018/2019

Course year 3

Structure DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Subject matter ECONOMICO

Location Lecce

MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso GENERALE

Sede Lecce

METODI STOCASTICI PER L'ECONOMIA E LA FINANZA

Corso di laurea Economia finanza e assicurazioni

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 10.0

Ripartizione oraria Ore Attività frontale: 80.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2019/2020

FINANZA MATEMATICA

Corso di laurea Economia finanza e assicurazioni

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 10.0

Ripartizione oraria Ore Attività frontale: 80.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Sede Lecce

MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso GENERALE

Sede Lecce

A.A. 2018/2019

MATEMATICA FINANZIARIA

Corso di laurea ECONOMIA AZIENDALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Partizione (M - Z)

MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Partizione (M - Z)

MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso GENERALE

A.A. 2017/2018

MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2017/2018

Anno di corso 1

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Partizione (M - Z)

MATEMATICA PER LE APPLICAZIONI ECONOMICHE E FINANZIARIE

Corso di laurea ECONOMIA E FINANZA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2015/2016

Anno di corso 3

Struttura DIPARTIMENTO DI SCIENZE DELL'ECONOMIA

Percorso PERCORSO COMUNE

Sede Lecce

Torna all'elenco
BUSINESS ANALYTICS

Degree course MANAGEMENT DIGITALE

Subject area SECS-S/06

Course type Laurea

Credits 6.0

Teaching hours Ore Attività frontale: 36.0

For matriculated on 2018/2019

Year taught 2020/2021

Course year 3

Semestre Secondo Semestre (dal 24/02/2021 al 31/05/2021)

Language INGLESE

Subject matter ECONOMICO (A95)

Location Lecce

Basic elements of calculus and statistics for data analysis

The course presents a vast set of machine learning tools for understanding and making prediction from the data. All the presented tools are illustrated in several real case studies with the software R.

Knowledge and understanding:

· Knowledge and understanding of machine learning models;

· Knowledge and understanding of quantitative tools for business, including segmentation and forecasting.

 

Applying knowledge and understanding:

· Ability to extract relevant information from big dataset for management and business innovation.

· Ability to identify the machine learning models that are suitable to analyse correctly a specific business problem.

· Ability to use a specific programming language to implement machine learning procedures.

 

Making judgments:

Making judgements on pros and cons of different machine learning tools.

 

Communication skills:

to present in a concise way the results of a quantitative analysis.

 

Learning skills:

Ability to formalize in an algorithmic form a problem of interest in business.

Frontal lectures, exercises, computer labs.

The written exam consists of several exercises and one or more review questions. The project work consists of the preparation of a quantitative analysis related to the contents of the course with the help of the software R.

To pass the exam students must obtain a positive evaluation on both the written exam and the project. Both parts weigh 50% of the total points.

Sample of the written exam will be available at the course webpage.

 

There is no difference in the assessment procedures between attending and non-attending students.

 

University of Salento “promuove e garantisce l’inclusione e la partecipazione effettive degli studenti con disabilità” (art. 10 of the Statute). Students that have a disability or impairment that requires accommodations (i.e., alternate testing, readers, note takers or interpreters) could contact the Disability and Accessibility Offices in Student Services: paola.martino@unisalento.it

see the webpage economia.unisalento.it

Starting with January 2021, more information will be available on the course webpage.

Introduction to Machine Learning. Cross-Validation.

K-Nearest neighbour algorithms.

Linear Model. Regularization. Lasso.

Decision Trees.

Support Vector Machines.

Unsupervised learning. K-means algorithms. Clustering.

Required reading:

John C. Hull: Machine Learning in Business – An introduction to the world of data science, 2019.

 

Suggested reading:

James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning with Applications in R. Springer, 2013. Free available at http://www-bcf.usc.edu/~gareth/ISL/

 

Lectures notes will be provided.

BUSINESS ANALYTICS (SECS-S/06)
MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Primo Semestre (dal 14/09/2020 al 31/12/2020)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:

A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B) Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali.

C) Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.

D) Coordinate cartesiane nel piano. Teorema di Pitagora. Distanza tra due punti nel piano. Equazione della retta. Equazione della parabola. Equazione della circonferenza.

Sarà fornito e/o indicato materiale per lo studio individuale delle conoscenze sopra-indicate.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica applicata e computazionale per risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo logico-matematico.
  • Riconoscere i principali elementi del calcolo matriciale e vettoriale, nonché il loro uso nella soluzione di sistemi lineari.
  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale.
  • Sviluppare la capacità di risolvere problemi di ottimizzazione per funzioni reali di una variabile reale.

Risolvere problemi di integrazioni e comprendere la loro applicabilità-

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio logico-matematico di base.
  • Conoscenza e capacità di comprendere i principi fondamentali dello studio delle funzioni reali di una variabile reale.
  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

 

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Leggere e scrivere correttamente nel linguaggio della matematica.
  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.
  • Capacità di usare metodi quantitativi per formalizzare problemi di interesse economico/aziendale.
  • Capacità di usare un linguaggio di programmazione (software R) per risolvere semplici problemi matematici.

 

Autonomia di giudizio (making judgements):

valutare criticamente i risultati di un modello matematico di base (ad es. andamento vendite di un prodotto) per l’azienda.

 

Abilità comunicative (communication skills):

presentare in modo preciso le caratteristiche fondamentali di alcune funzioni ed il loro utilizzo in pratica.

 

Capacità di apprendimento:

formalizzare in modo adeguato un problema matematico di base.

Lezioni frontali ed esercitazioni, eventualmente in modalità telematica per il periodo di emergenza epidemiologica.

Prova scritta con esercizi e quesiti di comprensione dei argomenti presentati.

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte, nonché la capacità di usare adeguatamente il linguaggio matematico ed applicare in modo appropriato strumenti teorici a casi concreti. La prova d’esame può essere integrata con la preparazione di un progetto di elaborazione numerica con il software R. Non sono previste differenze nelle modalità d’esame fra studenti frequentanti e non frequentanti.

Prototipo della prova d’esame sarà messo a disposizione sulla pagina web del corso.

Gli studenti potranno anche sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili sulla pagina web dell’insegnamento.

 

L’Università del Salento “promuove e garantisce l’inclusione e la partecipazione effettive degli studenti con disabilità” (art. 10 dello Statuto). Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo

paola.martino@unisalento.it

Consultare la pagina web economia.unisalento.it

A partire da settembre 2020, maggiori informazioni saranno disponibili sulla pagina web dell’insegnamento.

Elementi di matematica.

Elementi di logica. Tabelle booleane. Quantificatori. Insiemi. Operazioni tra insiemi. Relazioni e funzioni.

I numeri reali.

I numeri naturali, interi e razionali. I numeri reali: definizioni e proprietà. Intervalli della retta reale. Il valore assoluto. La rappresentazione del piano cartesiano. Retta, circonferenza, parabola. I vettori reali.

Elementi di algebra lineare.

Equazioni di primo grado. Sistemi di due equazioni in due incognite. Vettori. Matrici. Determinanti. Sistemi di equazioni lineari. Regola di Cramer. Teorema di Rouché-Capelli.

Funzioni reali di variabile reale.

Funzioni elementari (funzioni potenza, esponenziali, logaritmi). Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

Limite di una funzione e continuità. Intorno di un punto. Punto di accumulazione. Definizione di limite. Limite destro e limite sinistro. Teorema del confronto e della permanenza del segno. Asintoti. Funzioni continue. Teorema dei valori intermedi e degli zeri. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte. Approssimazione di Taylor. Regola di de l’Hopital.

Ottimizzazione. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Convessità di una funzione. Grafico qualitativo di una funzione.

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Teorema fondamentale del calcolo integrale. Integrali definiti. Integrale come area. Integrazione per parti e per sostituzione.

Introduzione al software R per la risoluzione di problemi matematici.

Elementi di matematica.

Elementi di logica. Tabelle booleane. Quantificatori. Insiemi. Operazioni tra insiemi. Relazioni e funzioni.

I numeri reali.

I numeri naturali, interi e razionali. I numeri reali: definizioni e proprietà. Intervalli della retta reale. Il valore assoluto. La rappresentazione del piano cartesiano. Retta, circonferenza, parabola. I vettori reali.

Elementi di algebra lineare.

Equazioni di primo grado. Sistemi di due equazioni in due incognite. Vettori. Matrici. Determinanti. Sistemi di equazioni lineari. Regola di Cramer. Teorema di Rouché-Capelli.

Funzioni reali di variabile reale.

Funzioni elementari (funzioni potenza, esponenziali, logaritmi). Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

Limite di una funzione e continuità. Intorno di un punto. Punto di accumulazione. Definizione di limite. Limite destro e limite sinistro. Teorema del confronto e della permanenza del segno. Asintoti. Funzioni continue. Teorema dei valori intermedi e degli zeri. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte. Approssimazione di Taylor. Regola di de l’Hopital.

Ottimizzazione. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Convessità di una funzione. Grafico qualitativo di una funzione.

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Teorema fondamentale del calcolo integrale. Integrali definiti. Integrale come area. Integrazione per parti e per sostituzione.

Introduzione al software R per la risoluzione di problemi matematici.

MATEMATICA PER LE DECISIONI AZIENDALI (SECS-S/06)
METODI STOCASTICI PER L'ECONOMIA E LA FINANZA

Corso di laurea Economia finanza e assicurazioni

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea Magistrale

Crediti 10.0

Ripartizione oraria Ore Attività frontale: 80.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Annualità Singola (dal 14/09/2020 al 25/05/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di studi di laurea triennale, con particolare riferimento al calcolo differenziale e integrale, nonché elementi di statistica e calcolo delle probabilità.

L’insegnamento ha l'obiettivo di fornire allo studente metodi e strumenti della matematica applicata e del calcolo delle probabilità per risolvere problemi matematici di rilevanza per l’analisi economico e finanziaria. In particolare, alla fine di questo corso lo studente dovrebbe essere in grado di riconoscere i principali elementi dei processi stocastici a tempo continuo, e di sviluppare la capacità di risolvere problemi di valutazione di opzioni nelle ipotesi del modello di Black-Scholes.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza dei principali metodi stocastici idonei ad affrontare alcuni problemi in economia e finanza.
  • Conoscenza delle proprietà di base dei processi stocastici (a tempo continuo) e loro utilizzo nei principali strumenti finanziari.
  • Comprensione dei principali strumenti finanziari (derivati) e delle metodologie adatte al relativo pricing.

 

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di implementare algoritmi e procedure per la simulazione di modelli stocastici (sia statici sia a tempo continuo).
  • Capacità di usare modelli matematici appropriati nella valutazione di strumenti finanziari.

 

Autonomia di giudizio (making judgements):

valutare criticamente i risultati di un modello matematico per l’economia e la finanza.

 

Abilità comunicative (communication skills):

presentare in modo preciso le caratteristiche fondamentali di un metodo stocastico e le sue applicazioni in economia e finanza.

 

Capacità di apprendimento:

individuare in modo adeguato gli strumenti matematici più adatti per risolvere problemi di interesse per l’economia e la finanza.

Lezioni frontali ed esercitazioni. Attività di laboratorio informatico.

Prova scritta con quesiti di carattere teorico ed esercizi di applicazione dei modelli studiati.

La prova scritta è integrata con un lavoro progettuale per il calcolo e la risoluzione di problemi computazionali su apposito linguaggio di programmazione. Per poter ricevere la parte progettuale, si contatti il docente.

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte, nonché la capacità di usare adeguatamente gli strumenti matematici presentati ed individuarne le possibili limitazioni.

Prototipo della prova d’esame sarà messo a disposizione sulla pagina web dell’insegnamento.

Gli studenti hanno la possibilità di sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili sulla pagina web dell’insegnamento.

 

Non sono previste differenze nelle modalità d’esame fra studenti frequentanti e non frequentanti.

 

Unisalento “promuove e garantisce l’inclusione e la partecipazione effettive degli studenti con disabilità” (art. 10 dello Statuto). Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo

paola.martino@unisalento.it

Si veda il sito web economia.unisalento.it

Per eventuali aggiornamenti e materiale didattico, si raccomanda di consultare la pagina web dell'insegnamento.

Complementi di calcolo delle probabilità. Simulazione di variabili aleatorie. Richiami e complementi su distribuzioni di variabili aleatorie discrete. Applicazione: il modello di CDO. Richiami e complementi su variabili aleatorie continue. Applicazione: stima del value-at-risk. I vettori aleatori. Distribuzioni e valore atteso condizionato.

 

Derivati ed opzioni. Il principio di arbitraggio. Il modello binomiale: elementi introduttivi. Alberi binomiali per la valutazione di opzioni.

 

Il Metodo Monte Carlo. Teoremi limite in probabilità. Legge dei grandi numeri. Teorema del limite centrale. “Simple” Monte Carlo. Bontà dell’approssimazione mediante Monte Carlo. Applicazione: calcolo del value-at-risk di un portafoglio finanziario.

 

Processi stocastici. Definizioni e proprietà. Esempi di processi stocastici a tempo discreto con applicazioni. La passeggiata aleatoria. Il problema della rovina del giocatore.

 

Il moto browniano. Trasformazioni del moto browniano. Proprietà del moto browniano. Il moto browniano geometrico. Simulazione e stima del moto browniano e del moto browniano geometrico.

 

Introduzione al calcolo stocastico. Elementi di equazioni differenziali ordinarie. Equazioni differenziali stocastiche (SDE). Formula di Ito. Simulazione di processi stocastici definiti da SDE (metodo di Eulero-Maruyama).

 

Il modello di Black-Scholes. Formula di Black-Scholes per opzioni europee. Volatilità implicita. Le greche.

 

Introduzione all’uso di R per l’economia e la finanza.

Il materiale didattico (appunti delle lezioni, esercitazioni) è distribuito attraverso la pagina dell’insegnamento su formazioneonline.unisalento.it.

 

E’ raccomandato il seguente testo:

Steven R. Dunbar: Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations. AMS/MAA Textbooks, Volume 49, 2019.

Disponibile al seguente link:

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/Book/BookMaster/mathfinance_book.pdf

In relazione a quest’ultima versione, i contenuti del corso fanno riferimento a tutti capitoli, con l’eccezione delle sezioni 1.5, 1.6, 3.1, 4.4, 5.1 nonché delle pagine 339-342, 366-374.

 

Per richiami di calcolo delle probabilità, si raccomanda:

C.M. Grinstead, J.L. Snell, Introduction to Probability.

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

 

Per una rassegna sul Metodo Monte Carlo, si veda:

A.B. Owen, Monte Carlo theory, methods and examples, 2013.

https://statweb.stanford.edu/~owen/mc/

METODI STOCASTICI PER L'ECONOMIA E LA FINANZA (SECS-S/06)
FINANZA MATEMATICA

Corso di laurea Economia finanza e assicurazioni

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea Magistrale

Crediti 10.0

Ripartizione oraria Ore Attività frontale: 80.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Annualità Singola (dal 16/09/2019 al 31/05/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di studi di laurea triennale, con particolare riferimento al calcolo differenziale, integrale, nonché elementi di statistica inferenziale e calcolo delle probabilità.

L’insegnamento ha l'obiettivo di fornire allo studente metodi e strumenti della matematica applicata e computazionale per risolvere problemi matematici di rilevanza per l’analisi economico e finanziaria.

Alla fine di questo corso lo studente dovrebbe essere in grado di riconoscere gli elementi fondamentali della finanza matematica, con particolare riguardo ai processi stocastici a tempo continuo, e di sviluppare la capacità di risolvere problemi di valutazione di opzioni.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza delle proprietà di base dei processi stocastici e loro utilizzo nei principali strumenti finanziari.
  • Comprensione dei principali strumenti finanziari (derivati) e delle metodologie adatte al relativo pricing.

 

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di usare modelli matematici appropriati nella valutazione di strumenti finanziari.
  • Capacità di implementare algoritmi e procedure per la simulazione di modelli stocastici.

 

Autonomia di giudizio (making judgements):

valutare criticamente i risultati di un modello matematico per l’economia e la finanza.

 

Abilità comunicative (communication skills):

presentare in modo preciso le caratteristiche fondamentali di un modello stocastico a tempo continuo per il pricing di un titolo finanziario derivato..

 

Capacità di apprendimento:

individuare in modo adeguato gli strumenti matematici più adatti per risolvere problemi di interesse per la finanza.

Lezioni frontali ed esercitazioni. Attività di laboratorio informatico.

Prova scritta con quesiti di carattere teorico ed esercizi di applicazione dei modelli studiati.

La prova scritta è integrata con un lavoro progettuale per il calcolo e la risoluzione di problemi computazionali su apposito linguaggio di programmazione. Per poter ricevere la parte progettuale, si contatti il docente.

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte, nonché la capacità di usare adeguatamente gli strumenti matematici presentati ed individuarne le possibili limitazioni.

Prototipo della prova d’esame sarà messo a disposizione sulla pagina dell’insegnamento su  formazioneonline.unisalento.it.

Gli studenti hanno la possibilità di sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili sulla pagina dell’insegnamento disponibile su

formazioneonline.unisalento.it.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo

paola.martino@unisalento.it

 

Non sono previste differenze nelle modalità d’esame fra studenti frequentanti e non frequentanti.

Tutte le informazioni sul corso e il relativo materiale didattico saranno disponibili unicamente alla pagina web del corso al suddetto indirizzo:

http://formazioneonline.unisalento.it/

Per accedere alla pagina suddetta, gli studenti dovranno registrarsi. La chiave di accesso è: logaritmo.

Introduzione alla Finanza Matematica.

Derivati ed opzioni. Arbitraggio.

Richiami di probabilità. Richiami su distribuzioni di variabili aleatorie discrete e continue e loro applicazioni alla finanza (modello di CDO).

Il modello binomiale: elementi introduttivi. Alberi binomiali per la valutazione di opzioni.

Processi stocastici: definizioni e proprietà. La passeggiata aleatoria. Il problema della rovina del giocatore.

Teoremi limite. Legge dei grandi numeri. Teorema del limite centrale. Il metodo Monte Carlo.

Il moto browniano. Trasformazioni del moto browniano. Proprietà del moto browniano. Il moto browniano geometrico.

Introduzione al calcolo stocastico. Formula di Ito.

Il modello di Black-Scholes. Formula di Black-Scholes per opzioni europee. Volatilità implicita. Le greche.

Il materiale didattico (slide, dispense, testi esercitazioni) è distribuito attraverso la pagina dell’insegnamento su formazioneonline.unisalento.it.

 

E’ raccomandato il seguente testo:

Steven R. Dunbar: Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations. AMS/MAA Textbooks, Volume 49, 2019.

Una versione preliminare del suddetto libro di testo è disponibile sulla pagina web dell’autore al seguente link:

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/Book/BookMaster/mathfinance_book.pdf

In relazione a quest’ultima versione, i contenuti del corso fanno riferimento a tutti capitoli, con l’eccezione delle sezioni 1.5, 1.6, 3.1, 4.4, 5.1 nonché delle pagine 339-342, 366-374.

FINANZA MATEMATICA (SECS-S/06)
MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Primo Semestre (dal 16/09/2019 al 31/12/2019)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:

A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B) Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali.

C) Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.

D) Coordinate cartesiane nel piano. Teorema di Pitagora. Distanza tra due punti nel piano. Equazione della retta. Equazione della parabola. Equazione della circonferenza.

Sarà fornito e/o indicato materiale per lo studio individuale delle conoscenze sopra-indicate.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica applicata e computazionale di acquisire la capacità di risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo logico-matematico.
  • Riconoscere i principali elementi del calcolo matriciale e vettoriale, nonché il loro uso nella soluzione di sistemi lineari.
  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale.

Sviluppare la capacità di risolvere problemi di ottimizzazione per funzioni reali di una variabile reale.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio logico-matematico di base.
  • Conoscenza e capacità di comprendere i principi fondamentali dello studio delle funzioni di una variabile.
  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

 

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di leggere e scrivere correttamente nel linguaggio della matematica.
  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.
  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi di interesse economico/aziendale.
  • Capacità di usare un linguaggio di programmazione (software R) per risolvere semplici problemi matematici.

 

Autonomia di giudizio (making judgements):

valutare criticamente i risultati di un modello matematico di base (ad es. modello di previsione, andamento vendite) per l’azienda.

 

Abilità comunicative (communication skills):

presentare in modo preciso le caratteristiche fondamentali di un problema di ottimizzazione.

 

Capacità di apprendimento:

formalizzare in modo adeguato un problema matematico.

Lezioni frontali. Esercitazioni.

Prova scritta con esercizi.

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte, nonché la capacità di usare adeguatamente il linguaggio matematico ed applicare in modo appropriato strumenti teorici a casi concreti. Prototipo della prova d’esame sarà messo a disposizione sulla pagina dell’insegnamento su formazioneonline.unisalento.it.

La prova può essere integrata con la preparazione di un progetto di elaborazione numerica con il software R. 

 

Gli studenti hanno la possibilità di sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili durante le lezioni e sulla pagina dell’insegnamento disponibile su

formazioneonline.unisalento.it.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo paola.martino@unisalento.it

 

Non sono previste differenze nelle modalità d’esame fra studenti frequentanti e non frequentanti.

Pubblicati su www.economia.unisalento.it

Tutte le informazioni sul corso e il relativo materiale didattico saranno disponibili unicamente alla pagina web del corso al suddetto indirizzo:

http://formazioneonline.unisalento.it/

Per accedere alla pagina suddetta, gli studenti dovranno registrarsi. La chiave di accesso è: logaritmo.

Concetti matematici di base.

Elementi di logica. Tabelle booleane. Quantificatori. Insiemi. Insiemi numerici (naturali, razionali e reali). La rappresentazione del piano cartesiano. Retta, circonferenza, parabola. Funzioni.

 

Elementi di algebra lineare.

Vettori. Matrici. Determinanti. Sistemi di equazioni lineari. Regola di Cramer. Teorema di Rouché-Capelli.

 

Funzioni reali di variabile reale.

Funzioni elementari. Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

 

Limite di una funzione e funzione continua. Intorno di un punto. Definizione di limite. Limite destro e limite sinistro. Asintoti. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

 

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte. Applicazioni della derivata. Approssimazione lineare. Sviluppi di Taylor. Teoremi di de l’Hopital.

 

Ottimizzazione. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione.

 

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Teorema fondamentale del calcolo integrale. Integrali definiti. Integrale come area.

 

Introduzione al software R per la risoluzione di problemi matematici.

Per lo studio individuale, si consiglia:

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015.

Capitoli 0, 1, 2, 3, sezioni 4.4, 4.8, 4.9. 4.10. 4.12, capitoli 5, 6 (tranne sezioni 6.4, 6.7, 6.8 e 6.9).

 

Gli studenti possono anche utilizzare qualsiasi altro testo di Matematica a livello universitario purché copra gli argomenti sopra-indicati.

MATEMATICA PER LE DECISIONI AZIENDALI (SECS-S/06)
MATEMATICA FINANZIARIA

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MATEMATICA FINANZIARIA (SECS-S/06)
MATEMATICA FINANZIARIA

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Si richiedono le conoscenze di base di matematica presentate nell’insegnamento “Matematica Generale”.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica finanziaria e di acquisire la capacità di risolvere problemi concreti.

Alla fine dello studio di questo insegnamento lo studente ha acquisito i seguenti contenuti: Operazioni e leggi finanziarie. Tassi spot e forward. Rendite e ammortamenti. VAN e TIR, criteri di scelta per investimenti e finanziamenti. Obbligazioni. Immunizzazione finanziaria. Duration e convexity.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Saper formalizzare in termini matematici semplici problemi finanziari in condizioni di certezza.
     

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Saper applicare gli strumenti del Calcolo per la soluzione di problemi finanziari.

 

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un problema finanziario e la congruità della sua soluzione.

 

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche fondamenti di un problema finanziario.

 

Capacità di apprendimento: formalizzare in modo adeguato un problema finanziario.

Lezioni frontali ed esercitazioni.

Prova scritta con esercizi. Esame orale (facoltativo) di verifica e discussione dei temi della prova scritta.

 

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte. In relazione alla prova orale, è valutata la padronanza degli argomenti esposti.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento

Si veda https://www.economia.unisalento.it/536

Operazioni finanziarie di investimento e finanziamento, leggi di capitalizzazione e attualizzazione; regime di interesse semplice, di interesse anticipato e di interesse composto, o esponenziale, proprietà di scindibilità; convenzioni per il calcolo dei giorni.

Struttura per scadenza dei tassi, tassi Euribor e Libor, tassi forward.

Rendite: classificazione e valutazione, valutazione di rendite a rate costanti e in progressione geometrica, montante di una rendita; piani di ammortamento, quota interesse e quota capitale, forme comuni di ammortamento a tasso costante e a tasso variabile.

Tasso di rendimento di un'operazione finanziaria, rendimento e inflazione; valore attuale netto (VAN), tasso interno di rendimento (TIR), definizione e calcolo numerico; criteri di scelta (TIR, VAN e TRM) per investimenti, TAN e TAEG di un finanziamento.

Classificazione delle obbligazioni, Titoli di Stato, obbligazioni senza cedole, obbligazioni con cedole,
Duration, convexity, immunizzazione

Il materiale didattico (slide, dispense, testi esercitazioni) è distribuito attraverso il portale

formazioneonline.unisalento.it (password: euclide).

 

Per approfondimenti e/o studio individuale, si consiglia:

Giacomo Scandolo, “Matematica Finanziaria",
Amon Editore, 2013.

 

Gli studenti possono anche utilizzare qualsiasi altro testo di Matematica Finanziaria, purché copra gli argomenti sopra-indicati.

MATEMATICA FINANZIARIA
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MATEMATICA GENERALE (SECS-S/06)
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:

A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B)Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali.

C)Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.

D)Coordinate cartesiane nel piano. Teorema di Pitagora. Distanza tra due punti nel piano. Equazione della retta. Equazione della parabola. Equazione della circonferenza.

Sarà fornito materiale per lo studio individuale delle conoscenze sopra-indicate.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica e di acquisire la capacità di risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine dello studio di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo matematico.

  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale.

  • Sviluppare la capacità di risolvere problemi di ottimizzazione per una variabile.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio matematico di base.

  • Conoscenza e capacità di comprendere gli aspetti fondamentali delle funzioni di una variabile.

  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di leggere, scrivere e comunicare nel linguaggio della matematica.

  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.

  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi di interesse economico/aziendale.

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un modello matematico di base (ad es. modello di previsione, andamento vendite) per l’azienda.

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche principali di un modello matematico (unidimensionale) per l’analisi economica.

Capacità di apprendimento: formalizzare in modo adeguato un problema matematico in diverse situazioni concrete

Prova scritta con esercizi. Esame orale (facoltativo).

 

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte. In relazione alla prova orale, è valutata la padronanza degli argomenti esposti.

La prova scritta prevede anche la verifica degli argomenti indicati nella sezione “Prerequisiti”.

 

Gli studenti hanno anche la possibilità di sostenere l’esame in prove intermedie parziali (esoneri). Maggiori informazioni in tal senso saranno disponibili sulla pagina web del corso su formazioneonline.unisalento.it.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame è invitato a contattare l'ufficio Integrazione Disabili dell'Università del Salento.

Si veda https://www.economia.unisalento.it/536

Concetti matematici di base.

Insiemi, relazioni, funzioni. Insiemi numerici (naturali, razionali e reali). La rappresentazione del piano cartesiano. Retta, circonferenza, parabola.

 

Funzioni reali di variabile reale.

Funzioni elementari. Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

 

Limite di una funzione e funzione continua. Intorno di un punto. Definizione di limite. Limite destro e limite sinistro. Asintoti. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

 

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte.

 

Applicazioni della derivata. Approssimazione lineare. Sviluppi di Taylor. Elasticità. Teoremi di de l’Hopital.

 

Ottimizzazione di una variabile. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione.

 

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Integrazione per parti. Integrali definiti. Integrale come area.

 

Elementi di algebra lineare.

Vettori. Matrici. Determinanti. Sistemi di equazioni lineari. Regola di Cramer. Teorema di Rouché-Capelli.

Il materiale didattico (slide, dispense, testi esercitazioni) è distribuito attraverso il portale formazioneonline.unisalento.it (password: euclide).

 

Per approfondimenti e/o studio individuale, si consiglia anche:

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015.

 

Gli studenti possono anche utilizzare qualsiasi altro testo di Matematica Generale, purché copra gli argomenti sopra-indicati.

MATEMATICA GENERALE
MATEMATICA PER LE DECISIONI AZIENDALI

Corso di laurea MANAGEMENT DIGITALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 48.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 17/09/2018 al 31/12/2018)

Lingua ITALIANO

Percorso GENERALE (000)

Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:

A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B)Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali. C)Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.

D)Coordinate cartesiane nel piano. Teorema di Pitagora. Distanza tra due punti nel piano. Equazione della retta. Equazione della parabola. Equazione della circonferenza.

Sarà fornito materiale per lo studio individuale delle conoscenze sopra-indicate.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica applicata e computazionale di acquisire la capacità di risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine dello studio di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo logico-matematico.

  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale.

  • Sviluppare la capacità di risolvere problemi di ottimizzazione per una variabile, anche in modo numerico.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio logico-matematico di base.
  • Conoscenza e capacità di comprendere gli aspetti fondamentali delle funzioni di una variabile.
  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di leggere, scrivere e comunicare nel linguaggio della matematica.
  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.
  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi di interesse economico/aziendale.

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un modello matematico di base (ad es. modello di previsione, andamento vendite) per l’azienda.

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche principali di un modello matematico (unidimensionale) per l’analisi economica.

Capacità di apprendimento: formalizzare in modo adeguato un problema matematico.

Lezioni frontali. Esercitazioni.

Prova scritta con esercizi. Esame orale (facoltativo).

 

In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte. In relazione alla prova orale, è valutata la padronanza degli argomenti esposti.

 

Gli studenti hanno la possibilità di sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili sul portale del corso su formazioneonline.unisalento.it.

 

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame è invitato a contattare l'ufficio Integrazione Disabili dell'Università del Salento.

Si veda https://www.economia.unisalento.it/536

Concetti matematici di base.

Elementi di logica. Tabelle booleane. Quantificatori. Insiemi. Insiemi numerici (naturali, razionali e reali). La rappresentazione del piano cartesiano. Retta, circonferenza, parabola. Funzioni.

 

Funzioni reali di variabile reale.

Funzioni elementari. Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta.  Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

 

Limite di una funzione e funzione continua. Intorno di un punto. Definizione di limite. Limite destro e limite sinistro. Asintoti. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

 

Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte.

 

Applicazioni della derivata. Approssimazione lineare. Sviluppi di Taylor. Teoremi di de l’Hopital.

 

Ottimizzazione di una variabile. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione.

 

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Integrali definiti. Integrale come area.

Il materiale didattico (slide, dispense, testi esercitazioni) è distribuito attraverso il portale formazioneonline.unisalento.it (password: euclide).

 

Per approfondimenti e/o studio individuale, si consiglia anche:

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015.

 

Gli studenti possono anche utilizzare qualsiasi altro testo di Matematica a livello universitario purché copra gli argomenti sopra-indicati.

MATEMATICA PER LE DECISIONI AZIENDALI (SECS-S/06)
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Primo Semestre (dal 18/09/2017 al 31/12/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MATEMATICA GENERALE (SECS-S/06)
MATEMATICA GENERALE

Corso di laurea ECONOMIA AZIENDALE

Settore Scientifico Disciplinare

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Nessuno.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della matematica e di acquisire la capacità di risolvere problemi matematici di rilevanza per l’analisi economico/aziendale.

Alla fine dello studio di questo corso lo studente dovrebbe essere in grado di:

  • Riconoscere le basi del linguaggio e del formalismo matematico.

  • Riconoscere i diversi tipi di funzioni e la loro applicabilità in problemi economico/aziendale;

  • Sviluppare la capacità di risolvere problemi di ottimizzazione per una variabile.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio matematico di base.

  • Conoscenza e capacità di comprendere gli aspetti fondamentali delle funzioni di una variabile.

  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione.

  • Conoscenza e capacità di comprensione di problemi di base per le funzioni di due variabili.

     

    Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di leggere, scrivere e comunicare nel linguaggio della matematica.

  • Capacità di usare metodi quantitativi per problemi di ottimizzazione.

  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi di interesse economico/aziendale.

     

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un modello matematico di base (ad es. modello di previsione, andamento vendite) per l’azienda.

 

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche fondamenti di un modello matematico (unidimensionale) per l’analisi economica.

 

Capacità di apprendimento: scegliere in modo adeguato lo strumento matematico adatto nelle diverse situazioni concrete-

Lezioni forntali ed esercitazioni.

Prova scritta con esercizi. Esame orale (facoltativo) di verifica e discussione dei temi della prova scritta.

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo paola.martino@unisalento.it.

Per una lista completa, si faccia riferimento al materiale delle lezioni. Di seguito, ecco un elenco riassuntivo:

Concetti matematici di base.

Insiemi, relazioni, ordini, funzioni. Insiemi numerici (naturali, razionali e reali). Riepilogo su equazioni e disequazioni. La rappresentazione del piano cartesiano. Retta, circonferenza, parabola.

Funzioni reali di variabile reale.

Funzioni elementari. Funzioni goniometriche. Rappresentazioni di una funzione. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari. Trasformazioni elementari del grafico di funzioni. Funzione composta. Determinazione del dominio e dell’immagine di una funzione. Funzioni inverse.

Limite di una funzione e funzione continua. Intorno di un punto. Definizione di limite. Limite destro e limite sinistro. Asintoti. Forme di indeterminazione. Infiniti, infinitesimi e loro confronti.

Derivata. Interpretazione grafico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte.

Applicazioni della derivata. Approssimazione lineare. Teorema di Lagrange. Sviluppi di Taylor. Metodo di Newton. Elasticità. Teoremi di de l’Hopital.

Ottimizzazione di una variabile. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni. Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione.

Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Integrazione per parti. Integrazione per sostituzione. Integrali definiti. Integrale come area. Elementi di integrali generalizzati.

Cenni sulle funzioni di due variabili. Derivate parziali del primo e del secondo ordine. Ottimizzazione libera in due variabili. Cenni di ottimizzazione vincolata.

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015.

Materiale didattico aggiuntivo sarà fornito nel corso delle lezioni e messo a disposizione di tutti gli studenti sulla piattaforma online.

MATEMATICA GENERALE
MATEMATICA PER LE APPLICAZIONI ECONOMICHE E FINANZIARIE

Corso di laurea ECONOMIA E FINANZA

Settore Scientifico Disciplinare SECS-S/06

Tipo corso di studio Laurea

Crediti 8.0

Ripartizione oraria Ore Attività frontale: 64.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2017/2018

Anno di corso 3

Semestre Primo Semestre (dal 22/09/2017 al 31/12/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Non sono previste propedeuticità. Conoscenza di base richiesta: Matematica Generale e Matematica Finanziaria.

Questo insegnamento rientra tra le attività formative dell’ambito disciplinare statistico-matematico.

Il corso ha l'obiettivo di fornire allo studente i concetti di base della teoria del calcolo differenziale in spazi multidimensionali per poter risolvere problemi di ottimo in campo economico. Inoltre esso fornisce gli elementi di base per lo studio delle equazioni differenziali e dei sistemi dinamici.

Alla fine dello studio di questo corso lo studente dovrebbe essere in grado di:

  • Sviluppare la capacità di risolvere problemi di ottimizzazione per più variabili;

  • Sviluppare la capacità di risolvere problemi di equazioni differenziali di base;

  • Tradurre in linguaggio matematico un problema di ottimizzazione.

Conoscenza e capacità di comprensione (knowledge and understanding):

  • Conoscenza e capacità di comprensione del linguaggio matematico per l’ottimizzazione.

  • Conoscenza e capacità di comprendere gli aspetti fondamentali delle funzioni di più variabili.

  • Conoscenza e capacità di comprensione dei principali metodi di ottimizzazione a più variabili.

  • Conoscenza e capacità di comprensione dei principali metodi dei sistemi dinamici.

     

    Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding):

  • Capacità di usare metodi quantitativi per problemi di ottimizzazione a più variabili.

  • Capacità di usare metodi quantitativi per descrivere e formalizzare problemi economico/aziendale a più variabili.

  • Uso di software per problemi di ottimizzazione

     

Autonomia di giudizio (making judgements): valutare criticamente i risultati di un modello/metodo matematico per l’ottimizzazione.

 

Abilità comunicative (communication skills): presentare in modo preciso le caratteristiche fondamenti di un modello matematico per l’analisi economica/finanziaria.

 

Capacità di apprendimento: scegliere in modo adeguato lo strumento matematico adatto nelle diverse situazioni concrete.

Lezioni frontali ed esercitazioni

Prova scritta con esercizi. Esame orale (facoltativo) di verifica e discussione dei temi della prova scritta.

Non sono previste differenze nelle prove fra studenti frequentanti e non frequentanti;

Prove scritte sono disponibili su formazioneonline.unisalento.it.

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo paola.martino@unisalento.it.

Per una lista completa, si faccia riferimento alla piattaforma online. Di seguito, ecco un elenco riassuntivo:

 

Principi di ottimizzazione. Relazioni d’ordine. Ordinamento (parziale) in R2. Ordinamento lessicografico in R2. Massimi e minimi su insiemi ordinati. Riepilogo su problemi di ottimizzazione di una variabile reale.

 

Rappresentazione vettoriale in Rn. Funzione scalare di un vettore. Curve di livello. Norma, distanza e intorni in Rn. Intorni in Rn. Matrici e determinanti. Forme quadratiche. Matrici definite positive. Minori principali.

 

Ottimizzazione libera. Estremi per funzioni scalari di un vettore. Limiti e continuità per funzioni scalari di un vettore. Derivate parziali. Matrice hessiana. Condizioni sufficienti per punti estremi.

 

Ottimizzazione vincolata. Metodo dei moltiplicatori di Lagrange. Prezzi ombra. Applicazioni: coefficiente beta, modello di selezione del portafoglio.

 

Sistemi dinamici. Sistemi a tempo discreto e a tempo continuo. Equazioni differenziali ordinarie. Equazioni differenziali a variabili separabili. Equazioni differenziali lineari.

 

Introduzione al software R. Vettori, matrici, funzioni. Rappresentazione grafica di funzioni. Massimi e minimi per funzioni di una variabile. Massimi e minimi per funzioni di più variabili. Calcolo del coefficiente beta. Metodo di selezione di portafoglio.

Castagnoli, Cigola, Peccati: Matematica in Azienda 2. Complementi di analisi. Egea, terza edizione, 2010.

Sydsater, K.; Hammond, P. e Strom, A.: Metodi Matematici per l’analisi economica e finanziaria, Pearson, 2015. Capitoli: 8-14.

Materiale didattico aggiuntivo sarà fornito nel corso delle lezioni e messo a disposizione di tutti gli studenti su formazioneonline.unisalento.it

MATEMATICA PER LE APPLICAZIONI ECONOMICHE E FINANZIARIE (SECS-S/06)

Tesi

Sono disponibili argomenti per tesi di laurea magistrale sulle seguenti tematiche:

Finanza Matematica

Metodi quantitativi per la stima del rischio

Temi di ricerca

Applied Mathematics, Dependence Models, Quantitative Risk Management, Classification and Data Analysis, Decision Sciences