Antonio FICARELLA

Antonio FICARELLA

Professore I Fascia (Ordinario/Straordinario)

Settore Scientifico Disciplinare ING-IND/09: SISTEMI PER L'ENERGIA E L'AMBIENTE.

antonio.ficarella@unisalento.it

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7761 +39 0832 29 7762

Full professor of Energy and Environment Systems.

Area di competenza:

For more detailed information see the Green Engine Lab website.

He is professor of the following courses:

  • MACCHINE (Fluid Machinery and Energy Systems)
  • AIRCRAFT POWERPLANT AND SYSTEMS - Propulsion and Combustion (AIRCRAFT ENGINE DESIGN,
    CONTROLS AND SUBSYSTEMS)

Scientific activities: unsteady and two-phase fluid-dynamic inside machines and apparatus, thermo and fluid dynamic applied to industrial processes, Diesel engines and direct injection systems, sensor development, industrial energy applications and environmental subjects, energy recovery from biomass, wastes, industrial processes. Aerospace propulsion, active control of flows and of cryogenic fuels, cavitation effects and spray and combustion behavior.

Orario di ricevimento

Send a request to antonio.ficarella@unisalento.it.

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

 

 

For more detailed information see the Green Engine Lab website.

 

Full professor of Energy and Environment Systems at University of Salento (Italy); Director of the Department of Engineering for Innovation (2013-2015). President of the ITS (High Technical Institute) Aerospace Foundation since 2013; Dean of the Faculty of Industrial Engineering (2008-2012).

Member of the Board of Directors of the Aerospace Technological Cluster (DTA, 2009-2015). Member of the Advisory Council for Aeronautics Research in Europe (ACARE) since 2012, and of the Technical Committee of CTNA - Italian Aerospace Technological Cluster since 2012.

Member of the Committee for the Development of Aeronautic Industry since 2014.

National scientific coordinator of the Project of National Interest (PRIN) Cycle-Resolved Emissions Control of Internal Combustion Engines by Means of an Innovative Optical Sensor (2006-2008), of the project of network of laboratories "GREEN ENGINE" (2009-2012), of research unit in the European Project Renewable energy and forest management (European Project INTERREG 2004-2007), and, of the project PON MALET - Development of technologies for propulsion at high altitude and long range of uninhabited aircraft (2011-2015). Scientific coordinator of the MEA project (Energy Hybrid Management for aeronautical applications) since 2013. Scientific coordinator for the University of Salento, since 2016, of the project TECHNOLOGY DEVELOPMENT COMMUNITY, in collaboration with GE Avio and several Italian universities.

Shareholder of the spin-off ADVANTECH from 2011.

The scientific activities were developed in the fields of unsteady and two-phase fluid-dynamic inside machines and apparatus, thermo and fluid dynamic applied to industrial processes and aerospace propulsion, Diesel engines, industrial energy applications and related environmental subjects, energy recovery, active control of flows, with regard to the cavitation effects and the spray and combustion behavior.

 

For a detailed CV:

- MACCHINE - Fluid Machinery (Macchine I, Sistemi Energetici); for the lecture notes refer to the following:

- AIRCRAFT POWERPLANT AND SYSTEMS - Propulsion and Combustion (AIRCRAFT ENGINE DESIGN,CONTROLS AND SUBSYSTEMS); for the lecture notes refer to the following:

 

Scarica curriculum vitae

Didattica

A.A. 2018/2019

AIRCRAFT POWERPLANT DESIGN AND MANTENANCE (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Lingua INGLESE

Crediti 9.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Lingua ITALIANO

Crediti 9.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2016/2017

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

A.A. 2017/2018

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Lingua INGLESE

Crediti 9.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2016/2017

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Lingua ITALIANO

Crediti 9.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2015/2016

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

A.A. 2016/2017

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Crediti 9.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2015/2016

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Crediti 9.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2014/2015

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

A.A. 2015/2016

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Crediti 9.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2014/2015

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Crediti 9.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2013/2014

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

A.A. 2014/2015

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Crediti 9.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2013/2014

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede BRINDISI

Torna all'elenco
AIRCRAFT POWERPLANT DESIGN AND MANTENANCE (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2017/2018

Anno accademico di erogazione 2018/2019

Anno 2

Semestre Primo Semestre (dal 24/09/2018 al 21/12/2018)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

Course Requirements

Knowledge of the operating principles of fluid machinery and fluid dynamics. Basic elements of design and technology of fluid machines. Knowledge of aircraft propulsion and the basic principles of flight mechanics.

AIRWORTHINESS AND ENVIRONMENTAL CERTIFICATION; The Design Process; Engine Selection: Parametric Cycle Analysis; Engine Selection: Performance Cycle Analysis; Engine Component Design: Rotating Turbomachinery, Concept, Design Tools; Engine Component Design: Combustion Systems, Concept, Main Burner, Afterburners; Aircraft Engine Controls - Engine Modeling and Simulation; Aircraft Systems.

Aims of the course

(knowledge and understanding)

- Specialist knowledge of propulsion, advanced elements of mechanical design of aircraft engines.

- Knowledge of the internal fluid dynamics.

- Insights on design and technological features and performance of different types of engines.

- Insights into automatic controls and system design aimed at providing an integrated view of the aerospace product.

- Knowledge of advanced propulsion systems.

- Knowledge of specific technical terms in English.

(applying knowledge and understanding)

- Understanding of the main features of a project of the engine.

- Ability to perform sketches and preliminary dimensioning of the components of an aircraft engine.

- Ability to take action in the main stages the project of an aircraft engine.

- Advanced capabilities for the analysis of systems and control techniques.

- Ability to see the product in the form of system integrated complex.

(making judgements)

- Ability to analyze the mission requirements of the aircraft and to evaluate the necessary engine performance.

- Ability to understand the technological issues and system integration for the engine.

- Ability to understand the problems of research and development of an aircraft engine or of an aviation system.

(communication skills)

- Ability to communicate with experts in other fields of engineering for the integrated design of the engine.

(learning skills)

- Development of learning skills that enable to continue to study for the most part autonomously.

- Availability update the acquired knowledge.

Lectures; practical experiences in laboratories; homework (design project).

Laboratory

Engine performance Lab, Engine Monitoring Lab.

https://sites.google.com/site/greenenginelab2/home

Homework (desig project)

Software applications for the design of aircraft engines and systems. Application examples and design of aircraft engines and systems. Turbofan, turbofans with high bypass ratio, turboprop propeller design. Systems for Civil and military aircraft, helicopters, light aircraft. Fluid-dynamics numerical simulations applied to engines and systems design.

http://www.aircraftenginedesign.com/index.html (free software)

http://www.aircraftenginedesign.com/custom3.html

http://www.grc.nasa.gov/WWW/K-12/freesoftware_page.htm

http://www.cfdsupport.com/openfoam-for-windows.html

Exam procedures

The exam consists in the preparation of a Homework (desig project) and an oral interview.

A design project related to aircraft engines or systems will be conducted. Homework assignments will be due at least one month before the examination. The deliverables are a written report (in digital format, with any files used for calculations and the relevant bibliography) and the discussion of the work. You must acknowledge all references (both literature and people) used; all the deliverables will be sent by email to the instructor at least 10 days before the oral examination.

The oral examination consists of the discussion of the work of the year and a series of questions on the matters stated in the course program for the evaluation of acquired knowledge on the principles of operation of engines and aircraft systems, their performance and the principles of design and in general on the technologies of these systems.

OTHER REFERENCES

An Introduction to Combustion, McGrawHill.

Combustion Physics, Chung K. Law, Publisher: Cambridge University Press; ISBN-10: 0521870526, ISBN-13: 978-0521870528.

Performance of Light Aircraft (Aiaa Education Series), ISBN-10: 1563473305, ISBN-13: 978-1563473302, http://www.amazon.com.

Aerothermodynamics of Aircraft Engine Components, Author W. S. Blazowski, E.E. Zukoski, ISBN 978-1-60086-005-8, Publisher AIAA.

Flight Performance of Fixed and Rotary Wing Aircraft - Elsevier (Butterworth-Heinemann), Antonio Filippone, ISBN: 978-0-7506-6817-0, ISBN10: 0-7506-6817-2, http://textbooks.elsevier.com/web/product_details.aspx?isbn=9780750668170.

Civil Jet Aircraft Design - Lloyd R. Jenkinson, Paul Simpkin, Darren Rhodes, AIAA Education Series, ISBN-10: 1-56347-350-X, ISBN-13: 978-1-56347-350-0, http://www.aiaa.org/content.cfm?pageid=360&id=621.

Elements of Propulsion: Gas Turbines and Rockets, Jack Mattingly, Hans von Ohain, AIAA Education Series, ISBN-10: 1-56347-779-3, ISBN-13: 978-1-56347-779-9, http://www.aiaa.org/content.cfm?pageid=360&id=1343, http://www.amazon.com.

Jeppesen Aircraft Gas Turbine Powerplants, Charles E. Otis, ISBN: 0884873110, http://www.flightstore.co.uk/jeppesen_aircraft_gas_turbine_powerplants.pilot.books/use.id.10.item_id.585/.

Principles of Helicopter Aerodynamics (Cambridge Aerospace Series), J. Gordon Leishman, Cambridge University Press, ISBN-10: 0521858607, ISBN-13: 978-0521858601, http://www.amazon.com.

PPSG Volume 1 - Piston Engines & Supercharging, http://shop.pilotwarehouse.co.uk/product222023catno0.html.

Aircraft Gas Turbine Engine Technology, Irwin E Treager, ISBN-13 9780028018287, McGraw-Hill, http://catalogs.mhhe.com/mhhe/viewProductDetails.do?isbn=0028018281.

Flow and Combustion in Reciprocating Engines, Arcoumanis, C.; Kamimoto, Take (Eds.), SpringerLink, Hardcover, ISBN 978-3-540-64142-1, Softcover, ISBN 978-3-642-08385-3, http://www.springer.com/materials/mechanics/book/978-3-540-64142-1.

INTERNET RESOURCES

http://www.aircraftenginedesign.com/index.html

http://www.aircraftenginedesign.com/custom2.html

http://www.grc.nasa.gov/WWW/K-12/airplane/bgp.html

Programma esteso

TOPIC: AIRWORTHINESS AND ENVIRONMENTAL CERTIFICATION, Aircraft Certification and Production Standards, Type Certificates, Rules for Initial Airworthiness, Certification Specification (CS); COURSE BOOK: ; LECTURE NOTES: .

TOPIC: The Design Process; COURSE BOOK: Aircraft Engine Design, cap. 1.; LECTURE NOTES: propDESIGNPR02.

TOPIC: Constraint Analysis, Mission Analysis; COURSE BOOK: Aircraft Engine Design, cap. 2 (no par. 2.2.2, 2.2.3, 2.2.4, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12), Aircraft Engine Design, cap. 3 (no par. 3.2.1, 3.2.2, 3.2.3, 3.2.6, 3.2.7, 3.2.8, 3.2.9, 3.2.10, 3.2.11); LECTURE NOTES: propCONSTRAINTRA01, propMISSIONR02, propEXAMPLE-CONSTRAINTR00, for in-depth analysis: constraintSTRALCIO2, constraintEXAMPLESTRALCIO, missionSTRALCIO, missionEXAMPLESTRALCIO.

TOPIC: Aircraft Engine Efficiency and Thrust Measures; COURSE BOOK: Aircraft Engine Design, app. E.; LECTURE NOTES: propMEASURESR02.

TOPIC: Engine Selection: Parametric Cycle Analysis, Engine Selection: Performance Cycle Analysis, Sizing the Engine: Installed Performance; COURSE BOOK: Aircraft Engine Design, cap. 4 (for 4.2.3, 4.2.4, 4.2.7 only concepts, no 4.3.4, 4.4 only concepts), Aircraft Engine Design, cap. 5 (5.2.4, 5.2.5, 5.4 only concepts), Aircraft Engine Design, cap. 6 (6.2.2, 6.3, 6.4 only concepts).; LECTURE NOTES: propPARAMETRICR03, propPERFORMANCER03, propINSTALLEDR03, propEXAMPLE-PARAMETRICR00.

TOPIC: Engine Component Design: Global and Interface Quantities. Concept, Design Tools, Engine Systems Design; COURSE BOOK: Aircraft Engine Design, cap. 7; LECTURE NOTES: propENGINEDESIGNR03.

TOPIC: Engine Component Design: Rotating Turbomachinery. Concept, Design Tools; COURSE BOOK: Aircraft Engine Design, cap. 8; LECTURE NOTES: propROTATINGR08.

TOPIC: Material Properties. SUPERALLOYS FOR TURBINES and MANUFACTURING METHODS; COURSE BOOK: Aircraft Engine Design, app. M, Turbo-Machinery Dynamics, chap. 11, 12; LECTURE NOTES: propMATERIALR01, propTMDsuperalloysR00, propTMDmanufacturingR00, for in-depth analysis: Turbomachinery_DynamicsCh11, Turbomachinery_DynamicsCh12.

TOPIC: Turbine Engine Life Management; COURSE BOOK: Aircraft Engine Design, app. N; LECTURE NOTES: propLIFEMANR01.

TOPIC: Fan and Compressor Airfoils, Turbine Blade and Vane; COURSE BOOK: Turbo-Machinery Dynamics, chap. 6. (no 6.12, 6.18), Turbo-Machinery Dynamics, chap. 8; LECTURE NOTES: propTMDfecairfoilsR01, propTMDturbinebvR00, for in-depth analysis: Turbomachinery_DynamicsCh06, propTMDimpellerbdR01, Turbomachinery_DynamicsCh08.

TOPIC: Engine Component Design: Combustion Systems. Concept, Main Burner, Afterburners; COURSE BOOK: Aircraft Engine Design, cap. 9 (no par. 9.1.4.5, 9.1.5.4, 9.3); LECTURE NOTES: propCOMBUSTIONR05, propCOMBUSTIONEXAMPLER02, THE NEW FRONTIERS FOR THE CONTROL-FICARELLAslidesR31, for in-depth analysis: propCOMBUSTIONEXAMPLESR02.

TOPIC: Combustion system; COURSE BOOK: Turbo-Machinery Dynamics, chap. 9; LECTURE NOTES: propTMDcombsysR00.

TOPIC: Engine Control Systems; COURSE BOOK: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Chap. 2; LECTURE NOTES: propASEngineControlR00.

TOPIC: Engine Controls.; COURSE BOOK: Aircraft Engine Design, app. O; LECTURE NOTES: propCONTROLR00.

TOPIC: Aircraft Engine Controls - Engine Modeling and Simulation; COURSE BOOK: Aircraft Engine Controls, chap. 2; LECTURE NOTES: propAECemodelingR03, for in-depth analysis: AIRCRAFT ENGINE CONTROLSch02, AIRCRAFT ENGINE CONTROLSapp.

TOPIC: Design of Set-Point Controllers. Design of Transient and Limit Controllers; COURSE BOOK: ; LECTURE NOTES: propAECdesignspcR02, propAECtransientlR01, for in-depth analysis: AIRCRAFT ENGINE CONTROLSch04, AIRCRAFT ENGINE CONTROLSch05.

TOPIC: Advanced Control Concepts; COURSE BOOK: Aircraft Engine Controls, chap. 8; LECTURE NOTES: propAECadvancedR00.

TOPIC: Engine Monitoring and Health Management, Integrated Control and Health Monitoring; COURSE BOOK: Aircraft Engine Controls, chap. 9; LECTURE NOTES: propAECemonitoringR01.

TOPIC: Aircraft Fuel Systems, Fuel System Deign Drivers, Fuel System Functions of Commercial Aircraft; COURSE BOOK: AIRCRAFT FUEL SYSTEMS cap. 2 - 3 (no 3.5) - 4.; LECTURE NOTES: propAFuelSfueldesignR00, propAFuelSfuelstorageR01, propAFuelSfuelfunctionsR01, AFUELSYSTEMSch020304.

TOPIC: Hydraulic Systems, Electrical Systems, Pneumatic Systems, Environmental Control Systems; COURSE BOOK: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Chap. 4, 5, 6, 7; LECTURE NOTES: propAShydraulicR00, propASpneumaticR01, propASenvironmentalR00, propASelectricalR00.

TOPIC: Advanced Systems; COURSE BOOK: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Chap. 10; LECTURE NOTES: propASadvancedR00.

TOPIC: System Design and Development; COURSE BOOK: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Chap. 11; LECTURE NOTES: propASdesignR00.

COURSE BOOKS

Aircraft Engine Design, Second Edition - Jack D. Mattingly, William H. Heiser, David T. Pratt, AIAA Education Series, ISBN-10: 1-56347-538-3, ISBN-13: 978-1-56347-538-2, http://www.aiaa.org/content.cfm?pageid=360&id=975, http://www.amazon.com.

Turbo-Machinery Dynamics: Design and Operations, A. S. Rangwala, S. Rangwala a., McGraw-Hill Professional Publishing, ISBN: 0071453695, ISBN-13: 9780071453691.

Aircraft Engine Controls: Design, System Analysis, and Health Monitoring, Link C. Jaw, Jack D. Mattingly, AIAA Education Series, ISBN-10: 1-60086-705-7, ISBN-13: 978-1-60086-705-7, http://www.aiaa.org/content.cfm?pageid=360&id=1759.

Aircraft Fuel Systems, Roy Langton, Chuck Clark, Martin Hewitt, Lonnie Richards, AIAA Education Series, ISBN-10: 1-56347-963-X, ISBN-13: 978-1-56347-963-2, http://www.aiaa.org/content.cfm?pageid=360&id=1741.

Design and Development of Aircraft Systems, 2nd Edition, Ian Moir, Allan Seabridge, ISBN: 978-1-1184-6914-9, E-book, November 2012, Wiley.

Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3rd Edition, Ian Moir, Allan Seabridge, ISBN: 978-1-1199-6520-6, E-book, August 2011, Wiley.

Contact the instructor (antonio.ficarella@unisalento.it) for more lecture notes.

AIRCRAFT POWERPLANT DESIGN AND MANTENANCE (ING-IND/09)
MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2016/2017

Anno accademico di erogazione 2018/2019

Anno 3

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

PreRequisiti del corso

Conoscenze delle leggi fondamentali della meccanica e della termodinamica.

Conoscenze di analisi matematica (derivate, integrali) e elementi di base di chimica.

Per le propedeuticità obbligatorie si rimanda al regolamento del corso.

Proprietà termodinamiche dei fluidi, principi di conservazione dell'energia applicato alle macchine a fluido, Criteri di classificazione e principi di funzionamento delle macchine a fluido, Energy Systems, Energy Resources, Analisi termodinamica dei processi industriali, Pompe, Compressori e Ventilatori, Generatori di vapore, Impianti motore a vapore, Impianti motore con turbina a gas, Motori alternativi a combustione interna, Sistemi energetici innovativi e fonti energetiche rinnovabili, Controllo della combustione e delle emissioni inquinanti.

Obiettivi del corso

Conoscenza e capacità di comprensione

- Conoscenza delle applicazioni della termofluidodinamica alle macchine a fluido.

- Conoscenza delle principali caratteristiche costruttive e prestazionali delle macchine a fluido e dei sistemi energetici.

- Conoscenza dei sistemi energetici innovativi e rinnovabili.

- Conoscenza delle problematiche ambientali legate alle macchine a fluido e ai sistemi energetici.

- Conoscenza dei principi dell'energetica industriale.

- Conoscenza sommaria della terminologia tecnica specifica in lingua inglese.

Conoscenza e capacità di comprensione applicate

- Capacità di impostare la progettazione di massima di una macchina a fluido e di un sistema energetico.

- Capacità di analizzare i dati sperimentali relativi al funzionamento di un sistema energetico.

Autonomia di giudizio

- Capacità di individuare le possibili ottimizzazioni delle prestazioni energetiche e ambientali dei sistemi energetici.

Abilità comunicative (communication skills)

- Capacità di comunicare gli aspetti tecnici rilevanti ai responsabili della progettazione, del collaudo, della conduzione e della manutenzione.

Capacità di apprendere

- Capacità di interpretare documenti tecnici specifici riguardati le macchine a fluido e i sistemi energetici.

- Capacità di intraprendere studi specialistici più avanzati con autonomia.

Lezioni in aula, esperienze di laboratorio, esercitazioni.

Esercitazioni

Esercitazioni sulla impostazione dei calcoli per la valutazione delle prestazioni di macchine a fluido e sistemi energetici.

Laboratorio

Esperienze di laboratorio per l'analisi dei dati sperimentali sul funzionamento di vari tipi di macchine a fluido.

Modalità d'esame

L'esame consiste in una prova scritta e un colloquio orale. La Prova scritta consiste in alcuni esercizi per verificare la capacità di impostare i modelli per la valutazione delle prestazioni delle macchine a fluido e dei sistemi energetici. Le tracce delle precedenti prove scritte sono disponibili in:

https://intranet.unisalento.it/web/macchinei/documents

Durante la prova scritta è possibile usare i libri di testo ma non materiale relativo allo svolgimento di esercizi. L'esito della prova scritta sarà ritenuto valido solo per la sessione di esami in cui la prova stessa è stata svolta.

La Prova orale consiste nella discussione dello svolgimento della prova scritta e in una serie di domande sugli argomenti previsti nel programma del corso per la valutazione delle conoscenze acquisite sui principi di funzionamento delle macchine e sistemi energetici e sulle loro prestazioni.

ULTERIORE BIBLIOGRAFIA

A. Dadone, Introduzione e complementi di macchine termiche ed idrauliche, Ed. CLUT, Torino.

Macchi, "Termofluidodinamica applicata alle macchine", CLUP.

Capetti A., Compressori di gas, Giorgio.

Daly, "Tecnica della ventilazione", Ed. Woods Italiana.

Elliott, "Powerplant engineering", McGrawHill Publishing Company.

"Diesel Engine Management", SAE International, www.sae.org.

Boyce, "Handbook for cogeneration and combined cycle power plants", ASME Press, www.asme.org.

Afgan, Carvalho, "Sustainable assessment method for energy systems", Kluver Academic Publisher, www.wkap.nl.

Internal Combustion Engine Fundamentals, John B. Heywood, McGraw Hill.

Programma esteso

PARTE 1a - Sistemi energetici

Proprietà termodinamiche dei fluidi, il principio di conservazione dell'energia applicato alle macchine, il principio di conservazione dell'energia nel sistema di riferimento relativo, moto in condotti a sezione variabile. [dispensa Termodinamica-MacchineR08C*].

Criteri di classificazione e principi di funzionamento delle macchine a fluido; Macchine volumetriche e dinamiche. [Della Volpe cap. III; Ferrari cap. 1]. Rendimenti delle macchine a fluido e degli impianti. [Della Volpe cap. IV]. [Macchine a Fluido cap. 2]

Energy Systems, The Energy Cycle, Closed Cycles of Energy Resources. [Orecchini cap. I, dispensa ESEnergySystemsR00].

Energy Resources, Definition of Energy Potential, The Earth’s Energy Balance, Renewable Sources, Non-renewable Energy Sources. [Orecchini cap. II, dispensa ESEnergyResourcesR00].

Cenni di Analisi termodinamica dei processi industriali. [dispensa Exergy*].

PARTE 2a - Macchine e impianti di conversione e trasformazione dell'energia

Pompe. Parametri di funzionamento, rendimento, curve caratteristiche, punto curve e stabilità di funzionamento, cavitazione, portata minima, accoppiamento regolazione e avviamento, pompe centrifughe, assiali, volumetriche. [Della Volpe cap. XIV; Ferrari cap. 2.1-2.4]. [Macchine a Fluido cap. 4]

Compressori. Compressori dinamici, compressori centrifughi, parametri di funzionamento, prestazioni e curve caratteristiche, compressori assiali. Tipologie e applicazioni dei compressori centrifughi. Compressori volumetrici, alternativi e rotativi. [Della Volpe cap. XI, XII.1, 2, 3, 4, 5, 6, 7, XIII; Ferrari cap. 3]. [Macchine a Fluido cap. 7]

Regolazione dei turbocompressori, variazione della velocità angolare, laminazione all'aspirazione, laminazione allo scarico, bypass, variazione calettamento pale. Regolazione dei compressori volumetrici. [dispensa Termodinamica-MacchineR08C*].

Ventilatori e loro prestazioni, caratteristiche dei ventilatori, punto di funzionamento, pressione statica e dinamica, tipologia dei ventilatori (ventilatori assiali, elicoidali, centrifughi), confronto delle prestazioni. [dispensa Termodinamica-MacchineR08C*; Ferrari cap. 2.5].

Generatori di vapore. Caldaie a tubi di fumo e tubi di acqua, rendimenti. Impianti motore a vapore. Cicli e schemi di impianti, metodi per aumentare il rendimenti. Turbine a vapore, applicazioni e regolazione. [Della Volpe cap. VI.1, 2, 3, 4, 7 e V.1, 2, 3, no 3.1, 3.2, 3.3; Ferrari cap. 4]. [Macchine a Fluido cap. 8, 9, 11]

Impianti motore con turbina a gas. Generalità, analisi del ciclo ideale e reale, metodi per aumentare il rendimento, caratteristiche generali degli impianti, classificazione e campi di applicazione delle turbine a gas, impianti a ciclo combinato. [Della Volpe cap. VII.1, 2, 3, 4, 5, 6, 10, dispensa propDESIGNPR02; Ferrari cap. 6]. [Macchine a Fluido cap. 8, 10, 11]

Motori alternativi a combustione interna. Classificazione, cicli ideali e reali, potenza e curve caratteristiche, prestazioni, combustibili, alimentazione, regolazione, sovralimentazione, emissioni inquinanti, sistemi per ridurre le emissioni inquinanti. [Della Volpe ed. 2011 cap. VIII.1, 2, 3, 4, 5, 6, 7, 8, 9, 10 no sottoparagrafi, 11, 12, 13, 14, 17, 18 , 19, 20, 21]. [Macchine a Fluido cap. 13, 14]

Wind power plant, photo-voltaic plants, fuel cells. Compression heap pump, absorption heat pumps. [Orecchini cap. 4.2.1.2, 4.2.2.1, 4.2.3.4, 4.2.9.1, 4.3.2.1, dispensa ESEnergyConversionR02B, Ferrari cap. 5].

Distribuited generation, Cogeneration. [Orecchini cap. 5, dispensa ESDistributedGenerationR00, Della Volpe cap. IX, Ferrari cap. 7].

Controllo della combustione e delle emissioni inquinanti. Controllo dell'inquinamento durante la combustione, caldaie a letto fluido, bruciatori a basse emissioni di NOx, Filtri elettrostatici e a maniche, desolforazione dei fumi (a secco, a umido, a recupero). [dispensa macchineCombContrR00].

LIBRI DI TESTO

Renato Della Volpe, Macchine, Liguori Editore (http://www.liguori.it/schedanew.asp?isbn=4972&vedi=testoebook#ebook) - può essere acquistata versione online.

Energy Systems in the Era of Energy Vectors, Orecchini Fabio, Naso Vincenzo, Springer (http://link.springer.com/book/10.1007/978-0-85729-244-5/page/1).

Ferrari - Hydraulic Thermal Machines di Progetto Leonardo (http://www.editrice-esculapio.com/ferrari-hydraulic-and-thermal-machines/).

V. Dossena, G. Ferrari, P. Gaetani, G. Montenegro, A. Onorati, G. Persico, Macchine a fluido, CittàStudiEdizioni, 2015. [http://www.cittastudi.it/catalogo/ingegneria/macchine-a-fluido-3547]

Renato Della Volpe, Esercizi di macchine, Liguori Editore.

Dispense reperibili nei seguenti siti (richiedere ulteriori dispense al docente):

http://www.ingegneria.unisalento.it/scheda_docente_lm1/-/people/antonio.ficarella/materiale

https://intranet.unisalento.it/web/macchinei/documents

MACCHINE (ING-IND/09)
AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2016/2017

Anno accademico di erogazione 2017/2018

Anno 2

Semestre Primo Semestre (dal 25/09/2017 al 22/12/2017)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)
MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2015/2016

Anno accademico di erogazione 2017/2018

Anno 3

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

MACCHINE (ING-IND/09)
AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2015/2016

Anno accademico di erogazione 2016/2017

Anno 2

Semestre Primo Semestre (dal 26/09/2016 al 22/12/2016)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)
MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2014/2015

Anno accademico di erogazione 2016/2017

Anno 3

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

MACCHINE (ING-IND/09)
AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2014/2015

Anno accademico di erogazione 2015/2016

Anno 2

Semestre Primo Semestre (dal 21/09/2015 al 18/12/2015)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)
MACCHINE (ING-IND/09)

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2013/2014

Anno accademico di erogazione 2015/2016

Anno 3

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

MACCHINE (ING-IND/09)
AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/09

Anno accademico 2013/2014

Anno accademico di erogazione 2014/2015

Anno 2

Semestre Primo Semestre (dal 29/09/2014 al 13/01/2015)

Lingua INGLESE

Percorso PERCORSO COMUNE (999)

AIRCRAFT POWERPLANTS AND SYSTEMS (ING-IND/09)

Pubblicazioni

For more detailed information see the Green Engine Lab website.

For the list of publications:

 

Scarica pubblicazioni

Temi di ricerca

 

For more detailed information see the Green Engine Lab website.

 

The main research activities were carried out in the fields of Energy, Fluid Machinery, Environment Impact, Industrial Plants. The main activities topics are Applied and Industrial Fluid-dynamic, Combustion, Turbo-machinery, Environmental Impact, Energy Saving, Pollution Prevention, Waste Recycling, Industrial Safety.

 

He is author of several papers, published in international journals or presented at international congresses and symposia. The scientific activities were developed in the fields of unsteady and two-phase fluid-dynamic inside machines and apparatus, thermo and fluid dynamic applied to industrial processes simulation, Diesel engines and related direct injection systems, Diesel engine control and monitoring, sensor development, innovative monitoring techniques applied to IC engines, industrial energy applications and related environmental subjects, energy recovery from biomass, wastes, industrial processes. In the field of the aerospace propulsion, the research activities were developed in the fields of the active control of flows (for external profiles or inside the turbo-machinery) and of cryogenic fuels, with particular regard to the cavitation effects and the spray and combustion behavior.

 

In the field of the renewable energy, the research activity was devoted to the forecasting of the power produced by a wind farm. Different forecasting models - Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) – have been analyzed, to perform a non-linear mapping and to provide a robust approach to wind power prediction. Some new hybrid methods were analyzed and proposed, based on the application of the six Daubechies wavelet employed to do the 3rd level discrete wavelet decomposition of the original hourly wind power time series, in combination with ANNs, ARMA and ANFIS models, in order to predict the power production of a wind farm. In particular, the results obtained with and without the wavelet decomposition were compared for each of the aforementioned techniques (ANNs, ARMA and ANFIS), by investigating the error of the different prediction systems for various forecasting horizons; the statistical distributions of the error are calculated and presented.

 

In the aerospace field, the research activities regarded the combustion phenomena in liquid-propellant rocket engines. The combustion occurs at operating conditions well above of the thermodynamic critical points of the fluid where reactants properties show liquid-like densities, gas-like diffusivity, and pressure-dependent solubility. Actually, there is a great interest in the development of reusable liquid rocket engines that operates with methane and liquid oxygen as propellants. In the carried-out numerical study of LOX/CH4 jet flames, the choice of the combustion model is a critical point: it should be accurate in the phenomena description but it should also characterized by a low computational cost. Different combustion models were used as the Eddy-dissipation finite-rate approach based on Arrhenius chemical kinetics, the equilibrium mixture fraction model (PDF) and the Steady State Flamelet approaches. Different chemical kinetics schemes were used, as the Skeletal mechanism and the Jones- Lindstedt mechanism, that permit to limit the number of reactions and species but taking into account also the intermediate species in the flame. Finally, an Eulerian (i.e., single-phase) methodology by using both ideal gas and real gas equation of state was used as well as a discrete phase approach that uses an Eulerian description of the gas phase and Lagrangian equations for the dilute spray.

 

The topic of active control of flow has been the subject of studies and research. Particularly, the computational modeling of a single dielectric barrier discharge (SDBD) plasma actuator was carried out; its applications as a flow actuator were studied. The plasma acts as a momentum source to the boundary layer allowing it to remain attached throughout a large portion of the airfoil.

The RANS simulations were performed using a CFD code in which the plasma force have been modeled as paraelectric force acting on the charged particles in the working flow

Using this numerical model, different cases have been simulated on an airfoil, depending on the direction of the force, to study the effect of the force on the flow and on the boundary layer.

The best flow control solutions have been displayed when body force component in the direction straight along the flow is positive and the component normal to the flow is considered. Finally, this numerical simulation methodology has been used for the investigations on the potential of plasma actuators, to suppress the flow separation over a compressor blade.

Specifically, the analysis has been focused to evaluate the increasing of the compressor performance depending on the actuator strength and position on the blade

 

Several studies were carried out using a CFD analysis applied to study the suppression of the boundary layer separation into a highly - loaded subsonic compressor stator cascade, by different active flow control techniques. In particular three different techniques have been applied: the actuation by steady jet, by zero net mass flux Synthetic Jet (SJA) and plasma actuator.

Using the numerical model, the effect of plasma actuators to suppress the flow separation over the blade has been investigated, increasing the turbo-machinery performance too. The comparison between the different actuation devices shows that, reducing the secondary flow structures, each actuation technique beneficially affects the performance of the stator compressor cascade, even if in the steady jet the costs are relevant.