Antonio Mario CARUSO

Antonio Mario CARUSO

Ricercatore Universitario

Dipartimento di Matematica e Fisica "Ennio De Giorgi"

Ex Collegio Fiorini - Via per Arnesano - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 9046

Area di competenza:

Algoritmi, Internet of Things, Industria 4.0, Sensor Networks, CyberSecurity, Scheduling, BlockChain

Recapiti aggiuntivi

http://bilbo.unisalento.it/antonio

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Brief CV:

  • Assistant Professor, Departement of Mathematics, University of Salento. From 2005.
  • PhD in Computer Science, University of Pisa, 2003.
  • Laurea Degree (MSc equivalent) in Computer Science with honors, University of Pisa, 1997.
  • August 2017 - Award from Lecce - 'Premio Eccellenza Città di Lecce 2017'.
  • June 2017 - September 2017, Ottawa University, Visiting Researcher - Premio Canada-Italia per l’Innovazione 2017. Research Project: 'Privacy-Utility Trade off in Big Data for Green Smart Cities'
  • 2012: Visiting Research Associate at Curiciba University and Belo Horizonte University - Brasil
  • April. 2007 – Nov. 2007: Visiting Research Associate at the Network Research Lab, University of California in Los Angeles (UCLA).
  • October 2004 – Feb. 2005: Visiting Research Associate at the Network Research Lab, University of California in Los Angeles (UCLA).
  • 2004 : Research Associate (post-doc position) at the Institute of Information Science and Technologies of CNR.
  • 2003 : Research Associate (post-doc position) at the Institute of Informatics and Telematics of CNR.
  • 1997 : Lieutenant at the Naval Accademy, Livorno.
Scarica curriculum vitae

Didattica

A.A. 2019/2020

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

Sede Lecce

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

Sede Lecce

A.A. 2018/2019

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

Sede Lecce

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

Sede Lecce

A.A. 2017/2018

ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Anno accademico di erogazione 2017/2018

Per immatricolati nel 2016/2017

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2016/2017

ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Anno accademico di erogazione 2016/2017

Per immatricolati nel 2015/2016

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

A.A. 2015/2016

PROGRAMMAZIONE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Anno accademico di erogazione 2015/2016

Per immatricolati nel 2015/2016

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

A.A. 2014/2015

ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2013/2014

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

PROGRAMMAZIONE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Anno accademico di erogazione 2014/2015

Per immatricolati nel 2014/2015

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

A.A. 2013/2014

PROGRAMMAZIONE

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Anno accademico di erogazione 2013/2014

Per immatricolati nel 2013/2014

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce - Università degli Studi

Torna all'elenco
CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Primo Semestre (dal 30/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

Il corso necessita delle conoscenze e capacità concrete di programmazione  e di analisi e sviluppo di algoritmi acquisite durante la triennale. Inoltre è richiesta la conoscenza di nozioni di matematica discreta (algebra lineare, analisi asintotica, funzioni, insiemi) e di calcolo delle probabilità (spazi di probabilità, variabili aleatoree continue e discrete, leggi di convergenza).

Conoscenze e comprensione. Possedere una preparazione di base sui concetti teorici relativi alla calcolablità e alla complessità computazionale.

Capacità di applicare conoscenze e comprensione: # essere in grado di produrre semplici dimostrazioni rigorose di risultati matematici non identici a quelli già conosciuti, ma chiaramente correlati ad essi, # essere in grado di formalizzare matematicamente problemi relativi alla calcolabilità o complessità di funzioni/algoritmi di moderata difficoltà, in modo da facilitare la loro analisi e risoluzione, # essere capaci di leggere e comprendere, in modo autonomo, testi avanzati o articoli di rivista relativi a questi settori.

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di riconoscere dimostrazioni rigorose e individuare ragionamenti fallaci.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti l’Informatica Teorica, sia in forma scritta che orale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali ed esercitazioni in aula

L’esame consiste in una prova orale, composto da due parti:
1) discussione tramite breve presentazione/seminario dei contenuti di una 'pubblicazione scientifica' a scelta dello studente da un elenco fornito dal docente a fine corso.
2) esame orale sul programma del corso.

Logica e Calcolabilità: Sintassi e Semantica del calcolo proposizionale: operatori, formule ben formate, tavole di verità, tautologie vs contraddizioni, formule soddisfacibili, SAT. ‘conseguenze logiche’, ‘dimostrazioni formali’ vs ‘dimostrabilità’. Correttezza e Completezza della logica proposizionale. Cenni di logiche del primo ordine. (3 lezioni). Calcolabilità: definizioni di funzione calcolabile, modelli di calcolo: schemi primitivi ricorsivi, totalità, aritmetizzazione, teorema di Cantor, insiemi transfiniti e loro cardinalità, Tecnica di dimostrazione Diagonale. Funzione di Ackerman e Schemi pienamente Ricorsivi. Funzioni parziali. Macchine di Turing, linguaggi, riconoscimento vs calcolo di funzione. Problema della Fermata, linguaggi R, RE, co-RE. Riduzioni tra linguaggi. Linguaggi funzionali vs imperativi vs object-oriented. (6 lezioni)

Complessità e Algoritmi: Classi di Complessità: DTIME, NDTIME, PSPACE, NPSPACE. P vs NP. Definizioni diverse per NP e loro relazioni. NPSPACE, EXP, etc. Problemi Np-Completi e NP-Ardui, Teorema di Cook-Levin, SAT e riduzioni polinomiali, esempi di varie riduzioni. Limiti e Utilità della teoria della complessità computazionale. Algoritmi di Approssimazione, esempi vari. Algoritmi Probabilistici, Max-SAT, Matching, etc. Effetto soglia sulle istanze di SAT. (7 lezioni)

Complex Networks: Grafi e Reti. Stutture dati e algoritmi di base. Visite, Componenti Connesse, Alberi di copertura di costo minimo, strutture dati Union-Find, e loro analisi e implementazione in Python. Reti Complesse come modelli di reti per il Web: da Erdos-Renyi to Power-law graphs. Crawling su Web e schema di costruzione di un motore di ricerca. (5 lezioni).

Quasi tutti i testi sotto sono reperibili liberamente come PDF su web. Usare un motore di ricerca per trovarli.

Italiano:

Inglese:

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE (INF/01)
CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Primo Semestre (dal 30/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Il corso necessita delle conoscenze e capacità concrete di programmazione  e di analisi e sviluppo di algoritmi acquisite durante la triennale. Inoltre è richiesta la conoscenza di nozioni di matematica discreta (algebra lineare, analisi asintotica, funzioni, insiemi) e di calcolo delle probabilità (spazi di probabilità, variabili aleatoree continue e discrete, leggi di convergenza).

Conoscenze e comprensione. Possedere una preparazione di base sui concetti teorici relativi alla calcolablità e alla complessità computazionale.

Capacità di applicare conoscenze e comprensione: # essere in grado di produrre semplici dimostrazioni rigorose di risultati matematici non identici a quelli già conosciuti, ma chiaramente correlati ad essi, # essere in grado di formalizzare matematicamente problemi relativi alla calcolabilità o complessità di funzioni/algoritmi di moderata difficoltà, in modo da facilitare la loro analisi e risoluzione, # essere capaci di leggere e comprendere, in modo autonomo, testi avanzati o articoli di rivista relativi a questi settori.

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di riconoscere dimostrazioni rigorose e individuare ragionamenti fallaci.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti l’Informatica Teorica, sia in forma scritta che orale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali ed esercitazioni in aula

L’esame consiste in una prova orale, composto da due parti:
1) discussione tramite breve presentazione/seminario dei contenuti di una 'pubblicazione scientifica' a scelta dello studente da un elenco fornito dal docente a fine corso.
2) esame orale sul programma del corso.

Logica e Calcolabilità: Sintassi e Semantica del calcolo proposizionale: operatori, formule ben formate, tavole di verità, tautologie vs contraddizioni, formule soddisfacibili, SAT. ‘conseguenze logiche’, ‘dimostrazioni formali’ vs ‘dimostrabilità’. Correttezza e Completezza della logica proposizionale. Cenni di logiche del primo ordine. (3 lezioni). Calcolabilità: definizioni di funzione calcolabile, modelli di calcolo: schemi primitivi ricorsivi, totalità, aritmetizzazione, teorema di Cantor, insiemi transfiniti e loro cardinalità, Tecnica di dimostrazione Diagonale. Funzione di Ackerman e Schemi pienamente Ricorsivi. Funzioni parziali. Macchine di Turing, linguaggi, riconoscimento vs calcolo di funzione. Problema della Fermata, linguaggi R, RE, co-RE. Riduzioni tra linguaggi. Linguaggi funzionali vs imperativi vs object-oriented. (6 lezioni)

Complessità e Algoritmi: Classi di Complessità: DTIME, NDTIME, PSPACE, NPSPACE. P vs NP. Definizioni diverse per NP e loro relazioni. NPSPACE, EXP, etc. Problemi Np-Completi e NP-Ardui, Teorema di Cook-Levin, SAT e riduzioni polinomiali, esempi di varie riduzioni. Limiti e Utilità della teoria della complessità computazionale. Algoritmi di Approssimazione, esempi vari. Algoritmi Probabilistici, Max-SAT, Matching, etc. Effetto soglia sulle istanze di SAT. (7 lezioni)

Complex Networks: Grafi e Reti. Stutture dati e algoritmi di base. Visite, Componenti Connesse, Alberi di copertura di costo minimo, strutture dati Union-Find, e loro analisi e implementazione in Python. Reti Complesse come modelli di reti per il Web: da Erdos-Renyi to Power-law graphs. Crawling su Web e schema di costruzione di un motore di ricerca. (5 lezioni).

Quasi tutti i testi sotto sono reperibili liberamente come PDF su web. Usare un motore di ricerca per trovarli.

Italiano:

Inglese:

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE (INF/01)
CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Primo Semestre (dal 02/10/2018 al 21/12/2018)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE (INF/01)
CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Primo Semestre (dal 02/10/2018 al 21/12/2018)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

Il corso necessita delle conoscenze e capacità concrete di programmazione  e di analisi e sviluppo di algoritmi acquisite durante la triennale. Inoltre è richiesta la conoscenza di nozioni di matematica discreta (algebra lineare, analisi asintotica, funzioni, insiemi) e di calcolo delle probabilità (spazi di probabilità, variabili aleatoree continue e discrete, leggi di convergenza).

Conoscenze e comprensione. Possedere una preparazione di base sui concetti teorici relativi alla calcolablità e alla complessità computazionale.

Capacità di applicare conoscenze e comprensione: # essere in grado di produrre semplici dimostrazioni rigorose di risultati matematici non identici a quelli già conosciuti, ma chiaramente correlati ad essi, # essere in grado di formalizzare matematicamente problemi relativi alla calcolabilità o complessità di funzioni/algoritmi di moderata difficoltà, in modo da facilitare la loro analisi e risoluzione, # essere capaci di leggere e comprendere, in modo autonomo, testi avanzati o articoli di rivista relativi a questi settori.

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di riconoscere dimostrazioni rigorose e individuare ragionamenti fallaci.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti l’Informatica Teorica, sia in forma scritta che orale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali ed esercitazioni in aula

L’esame consiste di una prova scritta e di una prova orale. La prova scritta verifica l’abilità si produrre dimostrazioni rigorose di semplici affermazioni matematiche correlate con gli argomenti del corso. La prova orale verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso.

Gli studenti che ottengono la sufficienza alla prova scritta in un appello possono presentarsi alla prova orale non più tardi dell’appello successivo. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Pagina del Corso: http://bilbo.unisalento.it/antonio/didattica/algoritmi-e-complessita/

Logica e Calcolabilità: Sintassi e Semantica del calcolo proposizionale: operatori, formule ben formate, tavole di verità, tautologie vs contraddizioni, formule soddisfacibili, SAT. ‘conseguenze logiche’, ‘dimostrazioni formali’ vs ‘dimostrabilità’. Correttezza e Completezza della logica proposizionale. Cenni di logiche del primo ordine. (3 lezioni). Calcolabilità: definizioni di funzione calcolabile, modelli di calcolo: schemi primitivi ricorsivi, totalità, aritmetizzazione, teorema di Cantor, insiemi transfiniti e loro cardinalità, Tecnica di dimostrazione Diagonale. Funzione di Ackerman e Schemi pienamente Ricorsivi. Funzioni parziali. Macchine di Turing, linguaggi, riconoscimento vs calcolo di funzione. Problema della Fermata, linguaggi R, RE, co-RE. Riduzioni tra linguaggi. Linguaggi funzionali vs imperativi vs object-oriented. (6 lezioni)

Complessità e Algoritmi: Classi di Complessità: DTIME, NDTIME, PSPACE, NPSPACE. P vs NP. Definizioni diverse per NP e loro relazioni. NPSPACE, EXP, etc. Problemi Np-Completi e NP-Ardui, Teorema di Cook-Levin, SAT e riduzioni polinomiali, esempi di varie riduzioni. Limiti e Utilità della teoria della complessità computazionale. Algoritmi di Approssimazione, esempi vari. Algoritmi Probabilistici, Max-SAT, Matching, etc. Effetto soglia sulle istanze di SAT. (7 lezioni)

Complex Networks: Grafi e Reti. Stutture dati e algoritmi di base. Visite, Componenti Connesse, Alberi di copertura di costo minimo, strutture dati Union-Find, e loro analisi e implementazione in Python. Reti Complesse come modelli di reti per il Web: da Erdos-Renyi to Power-law graphs. Crawling su Web e schema di costruzione di un motore di ricerca. (5 lezioni).

Quasi tutti i testi sotto sono reperibili liberamente come PDF su web. Usare un motore di ricerca per trovarli.

Italiano:

Inglese:

CALCOLABILITA' E COMPLESSITA' COMPUTAZIONALE (INF/01)
ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2017/2018

Anno di corso 2

Semestre Primo Semestre (dal 25/09/2017 al 15/12/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Algoritmi e Strutture Dati, Programmazione

Orale

ALGORITMI E COMPLESSITA' (INF/01)
ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Primo Semestre (dal 26/09/2016 al 16/12/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ALGORITMI E COMPLESSITA' (INF/01)
PROGRAMMAZIONE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2015/2016

Anno di corso 1

Semestre Secondo Semestre (dal 29/02/2016 al 31/05/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

PROGRAMMAZIONE (INF/01)
ALGORITMI E COMPLESSITA'

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 29/05/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ALGORITMI E COMPLESSITA' (INF/01)
PROGRAMMAZIONE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 29/05/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

PROGRAMMAZIONE (INF/01)
PROGRAMMAZIONE

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare INF/01

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore Attività frontale: 42.0 Ore Studio individuale: 108.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

PROGRAMMAZIONE (INF/01)

Tesi

Sono disponibili tesi sui seguenti argomenti:

* Stato dell'arte sui modelli fisico-matematici usati per descrivere il movimento di particelle lagrangiane (free-drifting) trasportate in un fluido. Uso di questi modelli per studiare reti di sensori subacquei (reti underwater acustiche). 

* Algoritmi di distributed consensus basati su BlockChain: applicazioni alle CriptoValute, (non solo BitCoin).

* Algoritmi di Approssimazione per Alberi di Steiner in R^2, per un insieme di punti dinamico (mobili).

Pubblicazioni

Book editor

  • Antonio Caruso, Vittorio Bilò. Proceedings of the 17th Italian Conference on Theoretical Computer Science (ICTCS 2016), Lecce, 7-9 Sep. 2016. CEUR Workshop Proceedings. [pdf]

Refereed Journals and Magazines

  • Dr. Soledad Escolar, Caruso, Antonio; Chessa, Stefano; Escolar, Soledad; del Toro, Xavier; López, Juan Carlos,  A Dynamic Programming Algorithm for High-Level Task Scheduling in Energy Harvesting IoTIEEE Internet of Things Journal,Volume: 5, Issue: 3, June 2018, pp 2234 - 2248 (doi: 10.1109/JIOT.2018.2828943).
  • Michele Girolami, Stefano Chessa, Antonio Caruso, On service discovery in mobile social networks: Survey and perspectives, pages 51-71, Computer Networks 88 (09/15) [pdf]
  • G. Amato, A. Caruso, S. Chessa, Application-Driven, Energy-Efficient Communication in Wireless Networks, Computer Communications, Volume 32, Issue 5, 27 March 2009, Pages 896-906.
  • Antonio Caruso, Stefano Chessa, Piero Maestrini, Worst-case Diagnosis Completeness in Regular Graphs under the PMC Model, IEEE Transactions on Computers, 56 (7), July 2007, pp. 917-924.
  • Luiz Carlos P. Albini, Antonio Caruso, S. Chessa, P. Maestrini, Reliable routing in wireless ad hoc networks: the virtual routing protocol, Journal of Network and Systems Managment, special issue of Wireless Ad Hoc Networks and Wireless sensor networks, 14 (3), September 2006, pp.335-358.
  • Yeng-Zhong Lee, Mario Gerla, Jason Chen, Jiwei Chen, Biao Zhou, Antonio Caruso, Direction Forward Routing for Highly Mobile Ad-Hoc Networks, Journal Ad Hoc & Sensor Wireless Network, 2 (2) February 2006.
  • Swades De, Antonio Caruso, Tamalika Chaira, and Stefano Chessa, Bounds on Hop Distance in Greedy Routing Approach in Wireless Ad Hoc Networks, International Journal on Wireless and Mobile Computing, 1 (2), 2006, pp. 131-140.
  • Antonio Caruso, S. Chessa, P. Maestrini, P. Santi, Fault-Diagnosis of Grid Structures, Theoretical Computer Science, January 2003, pp. 1149-1174
  • Antonio Caruso, S. Chessa, P. Maestrini, P. Santi, Diagnosability of Regular Systems, Journal of Algorithms, November 2002, Vol 45, pp. 126-143.
  • Antonio Caruso, S. Chessa, P. Maestrini, P.Santi, Evaluation of a Diagnosis Algorithm for Regular Structures, IEEE Transaction on Computers, July 2002, Vol 51, number 7, pp. 16.

    Refereed International Conferences

  • S. Escolar, Caruso Antonio; Chessa S., del Toro, Xavier; López, Juan Carlos, Félix J. Villanueva. Statistical Energy Neutrality in IoT Hybrid Energy-Harvesting Networks, IEEE ISCC 2018,25-28 June 2018 – Natal, Brazil.
  • Antonio Caruso and Melike Erol-Kantarci, Privacy-Utility Trade off in Big Data of Smart Cities, I-CiTies 2017, Bari.
  • Flaviano Di Rienzo, M. Girolami, S. Chessa, F. Paparella, A. Caruso. Signals From the Depths: Properties of Percolation Strategies with the Argo Dataset. ISCC 2016, Messina, http://dx.doi.org/10.1109/iscc.2016.7543768. June 2016.
  • Antonio Caruso, Stefano Chessa, Swades De, Relation between gradients and geographic distances in dense sensor networks with greedy message forwarding, (The Fourth International Conference on Systems and Networks Communications), Porto, Portugal, September 20-25, 2009.
  • Erol M., L.F.M. Vieira, A. Caruso, F. Paperella, M. Gerla, S. Oktug, Multi Stage Underwater Sensor Localization Using Mobile Beacons, The Second International Workshop on Underwater Sensors and Systems (UNWAT2008), Cap Esterel (France), August 2008.
  • A. Caruso, F. Paparella, Luiz Vieira, Melike Erol , Mario Gerla, The Meandering Current Mobility Model and its impact on Underwater Mobile Sensor Networks, INFOCOM 2008, Phoenix, AZ, USA.
  • Nicola Filardi, Antonio Caruso, Stefano Chessa, “Virtual Naming and Geographic Routing on Wireless Sensor Networks“, The Twelfth IEEE Symposium on Computers and Communications, Aveiro, Portugal, July 2007.
  • Filippo Barsotti, Antonio Caruso, and Stefano Chessa, “The Localized Vehicular Multicast Middleware: a Framework for Ad Hoc Inter-Vehicles Multicast Communications“, 10th WSEAS Int.Conf. on Communications, Athens, Greece, 10-15 July 2006, pp.6.
  • Mario Gerla, Yeng-Zhong Lee, Biao Zhou, Jason Chen, Antonio Caruso, ‘Direction’ forwarding for highly mobile, large scale ad hoc networks“, Mediterranean Ad Hoc Networking Workshop (MedHoc 2005), June 21-24, Île de Porquerolles, France.
  • Antonio Caruso, Stefano Chessa, Swades De, Alessandro Urpi, “GPS Free Coordinate Assignment and Routing in Wireless Sensor Networks“, 24th IEEE International Conference on Computer Communications (INFOCOM), March 13 – 17 2005 in Miami, Florida USA. keywords: virtual coordinates, sensor networks, routing.
  • A. Caruso, L. Albini, P. Maestrini, “A New Diagnosis Algorithm for Regular Interconnected Structures“, First Latin American Symposium on Dependable Computing – LADC 2003 (LNCS 2847), Sao Paulo, Brasil, October 2003, pp. 264-281.
  • A. Caruso, S. Chessa, P. Maestrini, P.Santi, “Diagnosis of Regular Structures“, Proc. IEEE DSN 2000, International Conference on Dependable Systems and Networks (FTCS 30), New York, USA, 25-28 June 2000, pp.25.
  • A. Caruso, S. Chessa, P. Maestrini, “Comparison-Based Diagnosis of VLSI Wafers“, DDECS 2000, Slovakia, April 5-7 2000a, pp.227-232.
  • A. Caruso, S. Chessa, P. Maestrini, P.Santi, “Reliable Diagnosis of Grid-Connected Systems“, Proc. IEEE LATW 2000, first Latin-American Test Workshop, Rio de Janeiro, Brazil, 13-15 March 2000, pp.163-165.
  • A. Caruso, S. Chessa, P. Maestrini, “Wafer-Scale VLSI Testing“, Proc. IEEE TMRCS 2000, Test Methods and Reliability of Circuits and Systems, Grassau, Germany, 1/l1 March 2000, pp.4.

 

Temi di ricerca

 

  • Energy Efficient Scheduling of Tasks in Energy Harvesting IoT nodes.
  • Machine Learning for Energy Efficient Scheduling.
  • Routing e Localizzazione su reti wireless ad-hoc
  • Routing e problemi algoritmici per reti wireless di sensori
  • Analisi Reti di Sensori Underwaters
  • Protocolli e algoritmi distribuiti: diagnosi di guasti.

 

  Vedi la pagina personale