Curriculum Vitae

Giuseppe Pascazio si è laureato in Ingegneria Meccanica il 6 aprile 1989 presso l'Università degli Studi di Bari. 
Nell'anno accademico 1990-91 ha frequentato il Diploma Course in Fluid Dynamics presso il von Kàrmàn Institute for Fluid Dynamics di Bruxelles conseguendo il Diploma “with honours”. 
Ha conseguito il titolo di Dottore di Ricerca in Ingegneria delle Macchine il 20 luglio 1993.

(1) Attività istituzionale e didattica
A dicembre 1995 ha preso servizio in qualità di Ricercatore Universitario per il gruppo di discipline I04 (Macchine e sistemi propulsivi) presso la I Facoltà di Ingegneria del Politecnico di Bari. 
Ottenuta l'idoneità di seconda fascia presso la Facoltà di Ingegneria dell'Università di Udine per il SSD I04B (Macchine a fluido), è stato chiamato dalla I Facoltà di Ingegneria del Politecnico di Bari e ha preso servizio il 1o ottobre 2000. 
Conseguita l’idoneità a Professore Ordinario per il settore scientifico disciplinare ING-IND/08 “Macchine a fluido” presso il Politecnico di Bari, ha preso servizio presso lo stesso Ateneo a dicembre 2003. 
A partire da aprile 2012, a conclusione di un bando di mobilità interna, è Professore Ordinario nel settore scientifico disciplinare ING-IND/06 “Fluidodinamica” (SC 09/A1).

(2) Attività di ricerca
Gli interessi scientifici di Giuseppe Pascazio riguardano lo sviluppo di modelli e metodi numerici della fluidodinamica, tra cui: metodi numerici per la soluzione delle equazioni di flussi incomprimibili e di flussi comprimibili, flussi supersonici e ipersonici, flussi in turbomacchine, modelli di combustione, problemi di interazione fluido-struttura.
Ha pubblicato circa 150 articoli scientifici di cui circa sessanta su riviste internazionali o capitoli di libro. 

(3) Attività organizzative e gestionali
È stato coordinatore del Dottorato di Ricerca in Ingegneria Meccanica (XXVI ciclo) e del Dottorato in Ingegneria Meccanica e Gestionale (XXVII, XXVIII, XXIX e XXX ciclo) del Politecnico di Bari. 
Nel periodo 2012-2013 è stato rappresentante del Politecnico di Bari nel Consiglio Direttivo del  CASPUR (Consorzio Interuniversitario per le Applicazione di Supercalcolo Per Università e Ricerca).
Nel periodo 2012-2016 è stato referente per il Politecnico di Bari dell'area Ingegneria Biomedica e Biomeccanica della Scuola Interpolitecnica di Dottorato. 
Nel periodo 2014-2015 è stato componente della Commissione per l’aggiornamento dello Statuto del Politecnico di Bari. 
Dal 2017 è  rappresentante del Politecnico di Bari nel Comitato Tecnico Scientifico dell’Istituto Tecnico Superiore per la mobilità sostenibile – Settore Aerospazio Puglia.
È stato coordinatore del corso di Laurea in Ingegneria dei Sistemi Aerospaziali del Politecnico di Bari per il triennio 2015-18, ruolo che ricopre anche per il triennio 2018-21.
È stato componente del Senato Accademico del Politecnico di Bari per il triennio 2015-18.  
È componente del Consiglio di Amministrazione del Politecnico di Bari per il triennio 2018-21.  

Didattica

A.A. 2020/2021

AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

A.A. 2019/2020

AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2019/2020

For matriculated on 2019/2020

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

A.A. 2018/2019

AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Owner professor Giuseppe PASCAZIO

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Giuseppe Pascazio: 54.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Torna all'elenco
AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/06

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Language INGLESE

Subject matter Percorso comune (999)

Basic knowledge of Calculus (derivatives and integrals), Applied Thermodynamics and Fluid Dynamics

The course provides the fundamentals for the study of gas dynamics and aerodynamics. Starting from the formulation of the fundamental equations of gas dynamics in vector notation, the one-dimensional and quasi-one-dimensional gas dynamics is studied, analyzing the isentropic conditions and the normal shocks, in order to characterize the flow through nozzles. Two-dimensional supersonic flows are then studied taking into account oblique shocks and Prandtl-Meyer expansion waves and finally the flow past airfoils. After recalling the concepts of classical aerodynamics, the approximate solution to several important aerodynamic problems is addressed employing the potential flow assumption. Finally, the study of finite wing theory is carried out.

At the end of the course the student must:

  • Know the fundamental equations of gas dynamics in vector notation and their simplification in the simplified case of: one-dimensional flow; quasi-one-dimensional flow; multi-dimensional irrotational flow;
  • Know how to characterize and calculate the properties of the flow through a normal shock, an oblique shock, an expansion wave
  • Know how to evaluate the force coefficients in the case of airfoils in a supersonic flow
  • Know the fundamental aspects of the flow past an airfoil and past a finite wing, along with the evaluation of the force coefficients.

Lectures supported by the use of a computer and a projector

Written examination for the application part and oral test.

In the written test (2 hours) the student is requested to solve two/three exercises concerning the arguments of the course; the test aims to verify the capability of the student to select the appropriate solution approach.

In the oral test the student has to discuss the theoretical arguments of the course, that the student must demonstrate to know and to be able to explain.

Basic concepts of fluid dynamics. Fluid properties; flow kinematics; Reynolds’ transport theorem; conservation equations in integral and differential form; Bernoulli’s equation; Crocco’s theorem; boundary layer theory (7 hours).

Introduction to the basic concepts of aerodynamics (3 hours).

One-dimensional gas dynamics. Quesi one-dimensional flow equations: compressibility; speed of sound; quasi one-dimensional steady flow; isentropic flow; stagnation and critical conditions; area-Mach number relation; mass flow rate; normal shocks; convergent nozzle; convergent-divergent nozzle (13 hours).

Two-dimensional gas dynamics. Oblique shocks and Prandtl-Meyer expansion waves; Mach angle; oblique shock equations; β-θ-Mach diagram; shock polar; shock reflection from a solid boundary; pressure-deflection diagrams; intersection of shocks of opposite families and of the same family; detached shock in front of a blunt body; isentropic expansions and compressions; Prandtl-Meyer function; reflection from a free boundary; over-expanded and under-expanded nozzle flows; Shock-Expansion Theory, Thin-Airfoil Theory (13 hours).

Linearized potential flow. Equations of the velocity potential; linear equation of the perturbed velocity potential; linearized two-dimensional subsonic flow; compressibility correction; critical Mach number (6 hours).

Aerodynamics. Kutta condition; Kelvin’s and Helmholtz’s theorems; two-dimensional potential flows. Flow past airfoils of arbitrary shape and evaluation of the force coefficients; finite wing theory and Prandtl’s Classical Lifting-Line Theory; applications (13 hours).

John D. Anderson Jr., “Modern compressible flow: With historical perspective”, Mc-Graw-Hill, Int. Ed. 1990.

John D. Anderson Jr., “Fundamental of Aerodynamics”, Mc-Graw-Hill, 5th Ed. 2010.

AERODYNAMICS (MOD.1) C.I. (ING-IND/06)
AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/06

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2019/2020

Year taught 2019/2020

Course year 1

Language INGLESE

Subject matter Percorso comune (999)

Basic knowledge of Calculus (derivatives and integrals), Applied Thermodynamics and Fluid Dynamics

The course provides the fundamentals for the study of gas dynamics and aerodynamics. Starting from the formulation of the fundamental equations of gas dynamics in vector notation, the one-dimensional and quasi-one-dimensional gas dynamics is studied, analyzing the isentropic conditions and the normal shocks, in order to characterize the flow through nozzles. Two-dimensional supersonic flows are then studied taking into account oblique shocks and Prandtl-Meyer expansion waves and finally the flow past airfoils. After recalling the concepts of classical aerodynamics, the approximate solution to several important aerodynamic problems is addressed employing the potential flow assumption. Finally, the study of finite wing theory is carried out.

At the end of the course the student must:

  • Know the fundamental equations of gas dynamics in vector notation and their simplification in the simplified case of: one-dimensional flow; quasi-one-dimensional flow; multi-dimensional irrotational flow;
  • Know how to characterize and calculate the properties of the flow through a normal shock, an oblique shock, an expansion wave
  • Know how to evaluate the force coefficients in the case of airfoils in a supersonic flow
  • Know the fundamental aspects of the flow past an airfoil and past a finite wing, along with the evaluation of the force coefficients.

Lectures supported by the use of a computer and a projector

Written examination for the application part and oral test.

In the written test (2 hours) the student is requested to solve two/three exercises concerning the arguments of the course; the test aims to verify the capability of the student to select the appropriate solution approach.

In the oral test the student has to discuss the theoretical arguments of the course, that the student must demonstrate to know and to be able to explain.

Basic concepts of fluid dynamics. Fluid properties; flow kinematics; Reynolds’ transport theorem; conservation equations in integral and differential form; Bernoulli’s equation; Crocco’s theorem; boundary layer theory (7 hours).

Introduction to the basic concepts of aerodynamics (3 hours).

One-dimensional gas dynamics. Quesi one-dimensional flow equations: compressibility; speed of sound; quasi one-dimensional steady flow; isentropic flow; stagnation and critical conditions; area-Mach number relation; mass flow rate; normal shocks; convergent nozzle; convergent-divergent nozzle (13 hours).

Two-dimensional gas dynamics. Oblique shocks and Prandtl-Meyer expansion waves; Mach angle; oblique shock equations; β-θ-Mach diagram; shock polar; shock reflection from a solid boundary; pressure-deflection diagrams; intersection of shocks of opposite families and of the same family; detached shock in front of a blunt body; isentropic expansions and compressions; Prandtl-Meyer function; reflection from a free boundary; over-expanded and under-expanded nozzle flows; Shock-Expansion Theory, Thin-Airfoil Theory (13 hours).

Linearized potential flow. Equations of the velocity potential; linear equation of the perturbed velocity potential; linearized two-dimensional subsonic flow; compressibility correction; critical Mach number (6 hours).

Aerodynamics. Kutta condition; Kelvin’s and Helmholtz’s theorems; two-dimensional potential flows. Flow past airfoils of arbitrary shape and evaluation of the force coefficients; finite wing theory and Prandtl’s Classical Lifting-Line Theory; applications (13 hours).

John D. Anderson Jr., “Modern compressible flow: With historical perspective”, Mc-Graw-Hill, Int. Ed. 1990.

John D. Anderson Jr., “Fundamental of Aerodynamics”, Mc-Graw-Hill, 5th Ed. 2010.

AERODYNAMICS (MOD.1) C.I. (ING-IND/06)
AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/06

Course type Laurea Magistrale

Credits 6.0

Owner professor Giuseppe PASCAZIO

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Giuseppe Pascazio: 54.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Basic knowledge of Calculus (derivatives and integrals), Applied Thermodynamics and Fluid Dynamics

The course provides the fundamentals for the study of gas dynamics and aerodynamics. Starting from the formulation of the fundamental equations of gas dynamics in vector notation, the one-dimensional and quasi-one-dimensional gas dynamics is studied, analyzing the isentropic conditions and the normal shocks, in order to characterize the flow through nozzles. Two-dimensional supersonic flows are then studied taking into account oblique shocks and Prandtl-Meyer expansion waves and finally the flow past airfoils. After recalling the concepts of classical aerodynamics, the approximate solution to several important aerodynamic problems is addressed employing the potential flow assumption. Finally, the study of finite wing theory is carried out.

At the end of the course the student must:

  • Know the fundamental equations of gas dynamics in vector notation and their simplification in the simplified case of: one-dimensional flow; quasi-one-dimensional flow; multi-dimensional irrotational flow;
  • Know how to characterize and calculate the properties of the flow through a normal shock, an oblique shock, an expansion wave
  • Know how to evaluate the force coefficients in the case of airfoils in a supersonic flow
  • Know the fundamental aspects of the flow past an airfoil and past a finite wing, along with the evaluation of the force coefficients.

Lectures supported by the use of a computer and a projector

Written examination for the application part and oral test.

In the written test (2 hours) the student is requested to solve two/three exercises concerning the arguments of the course; the test aims to verify the capability of the student to select the appropriate solution approach.

In the oral test the student has to discuss the theoretical arguments of the course, that the student must demonstrate to know and to be able to explain.

Basic concepts of fluid dynamics. Fluid properties; flow kinematics; Reynolds’ transport theorem; conservation equations in integral and differential form; Bernoulli’s equation; Crocco’s theorem; boundary layer theory (7 hours).

Introduction to the basic concepts of aerodynamics (3 hours).

One-dimensional gas dynamics. Quesi one-dimensional flow equations: compressibility; speed of sound; quasi one-dimensional steady flow; isentropic flow; stagnation and critical conditions; area-Mach number relation; mass flow rate; normal shocks; convergent nozzle; convergent-divergent nozzle (13 hours).

Two-dimensional gas dynamics. Oblique shocks and Prandtl-Meyer expansion waves; Mach angle; oblique shock equations; β-θ-Mach diagram; shock polar; shock reflection from a solid boundary; pressure-deflection diagrams; intersection of shocks of opposite families and of the same family; detached shock in front of a blunt body; isentropic expansions and compressions; Prandtl-Meyer function; reflection from a free boundary; over-expanded and under-expanded nozzle flows; Shock-Expansion Theory, Thin-Airfoil Theory (13 hours).

Linearized potential flow. Equations of the velocity potential; linear equation of the perturbed velocity potential; linearized two-dimensional subsonic flow; compressibility correction; critical Mach number (6 hours).

Aerodynamics. Kutta condition; Kelvin’s and Helmholtz’s theorems; two-dimensional potential flows. Flow past airfoils of arbitrary shape and evaluation of the force coefficients; finite wing theory and Prandtl’s Classical Lifting-Line Theory; applications (13 hours).

John D. Anderson Jr., “Modern compressible flow: With historical perspective”, Mc-Graw-Hill, Int. Ed. 1990.

John D. Anderson Jr., “Fundamental of Aerodynamics”, Mc-Graw-Hill, 5th Ed. 2010.

AERODYNAMICS (MOD.1) C.I. (ING-IND/06)
AERODYNAMICS (MOD.1) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/06

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Language INGLESE

Subject matter PERCORSO COMUNE (999)

AERODYNAMICS (MOD.1) C.I. (ING-IND/06)