Giulio AVANZINI

Giulio AVANZINI

Professore I Fascia (Ordinario/Straordinario)

Settore Scientifico Disciplinare ING-IND/03: MECCANICA DEL VOLO.

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Area di competenza:

Docente di

- Flight Mechanics (Meccanica del Volo)

- Atmospheric and Space Flight Dynamics (Dinamica del Volo Atmosferico e Spaziale)

- Aircraft Design (Progetto di Aeromobili)

- Laboratorio di Simulaaione del Volo

Orario di ricevimento

Il docente è disponibile (quasi) tutti i giorni, presso la sede di Brindisi (ufficio al primo piano del'Ed. 14, Cittadella della Ricerca) o quella Lecce (ufficio al secondo piano del Corpo O, Campus Ecotekne), in funzione dei suoi impegni didattici e istituzionali.

Si consiglia di concordare orario e sede del ricevimento tramite e-mail (possibilmente con uno o due giorni di anticipo).

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Professore Ordinario di Meccanica del Volo (SSD ING-IND/03)

Laureato con lode in Ingegneria Aeronautica nel 1993 presso l'Università degli Studi di Roma “La Sapienza”, con una tesi dal titolo “Il decollo da ski-jump per un velivolo a spinta vettorizzata.” Consegue presso la stessa Università il Dottorato di Ricerca in Meccanica Teorica e Applicata nel 1997, difendendo una tesi dal titolo “Analisi Dinamica e Tecniche di Simulazione per Velivoli ad Alte Prestazioni.”

Da luglio 1997 a luglio 1998 è tecnico di laboratorio presso l'Istituto Nazionale di Studi ed Esperienze di Architettura Navale di Roma (INSEAN), dove svolge attività sperimentale, collaborando con il David Taylor Model Basin di Washington e l’Iowa Institute of Hydraulic Research della University of Iowa.

Da agosto 1998 a gennaio 2011 è Ricercatore in Meccanica del Volo presso il Dipartimento di Ingegneria Aeronautica e Spaziale del Politecnico di Torino, dove ricopre incarichi didattici nell'ambito di diverse materie inerenti la Meccanica del Volo Atmosferico e Spaziale (Meccanica del Volo dell'Elicottero, Sperimentazione di Volo, Dinamica del Volo Spaziale, Dinamica e Controllo di Assetto, Dinamica del Volo del Velivolo Flessibile).

Dal 2011 è Professore Ordinario di Meccanica del Volo presso il Dipartimento di Ingegneria dell'Innovazione dell'Università del Salento, dove insegna Meccanica del Volo e Progetto di Aeromobili.

Dal 2014 è coordinatore del Corso di Dottorato in Ingegneria dei Sistemi Complessi.

È stato visiting lecturer e visiting professor presso la University of Glasgow (per 6 semestri fra il 2004 e il 2011), la University of Illinois at Urbana-Champaign (semestre autunnale dell'A.A. 2012-13), Sapienza Università di Roma (I semestre dell'A.A. 2016-17). Svolge regolarmente seminari e corsi brevi in diverse Università italiane edeuropee.

Senior member dell’American Institute of Aeronautics and Astronautics

Membro dell’American Helicopter Society.

Membro di ISME (Interuniversity Center of Integrated Systems for the Marine Environment).

International Advisor per il Journal of Guidance, Dynamcis and Control dell’AIAA.

Revisore per diverse riviste scientifiche internazionali.

Nel 2018 vince il Derek George Astridge Safety in Aerospace Award.

È titolare o incaricato dei seguenti corsi:

"Flight Mechanics (Mod. B)" (modulo integrato, primo anno della Laurea Magistrale in Aerospace Engineering, sede di Brindisi, I semestre)

"Atmospheric and Space Flight Dynamics (Mod. B)" (modulo integrato, primo anno della Laurea Magistrale in Aerospace Engineering, sede di Brindisi, II semestre)

"Aircraft Design" (secondo anno della Laurea Magistrale in Aerospace Engineering, sede di Brindisi, II semestre)

"Meccanica del Volo" (terzo anno della Laurea in Ingegneria dei Sistemi Aerospaziali del Politecnico di Bari, Sede di Taranto, I semestre)

Il programma dettagliato dei Corsi è riportato nella sezione Materiale Didattico

Didattica

A.A. 2023/2024

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2023/2024

For matriculated on 2022/2023

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2023/2024

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Percorso comune

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2023/2024

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE DESIGN

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2023/2024

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE TECHNOLOGY

LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2021/2022

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM PROGETTAZIONE AEROSPAZIALE

Sede Brindisi

A.A. 2022/2023

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2022/2023

For matriculated on 2021/2022

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Percorso comune

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE DESIGN

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE TECHNOLOGY

LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2020/2021

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM PROGETTAZIONE AEROSPAZIALE

Sede Brindisi

A.A. 2021/2022

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2021/2022

For matriculated on 2020/2021

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Percorso comune

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE DESIGN

FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM AEROSPACE TECHNOLOGY

LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2019/2020

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Currriculum aerospazio

Sede Brindisi

A.A. 2020/2021

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2019/2020

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY

FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter CURRICULUM AEROSPACE DESIGN

LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2018/2019

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Currriculum aerospazio

Sede Brindisi

A.A. 2019/2020

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2019/2020

For matriculated on 2018/2019

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter AEROSPACE DESIGN

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2019/2020

For matriculated on 2019/2020

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2019/2020

For matriculated on 2019/2020

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter DESIGN

A.A. 2018/2019

AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

Year taught 2018/2019

For matriculated on 2017/2018

Course year 2

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter AEROSPACE DESIGN

Location Brindisi

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Owner professor Giulio AVANZINI

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Giulio AVANZINI: 54.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 60.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter AEROSPACE DESIGN

FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Course type Laurea Magistrale

Language INGLESE

Credits 6.0

Teaching hours Ore totali di attività frontale: 60.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter MAIN COURSE

Torna all'elenco
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2022/2023

Year taught 2023/2024

Course year 2

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Good background in Flight Mechanics and Flight Dynamics, Aerospace Structures, Aerodynamics and Aeronautical Propulsion is strongly recommended.

Aircraft design is on one side a separate discipline in the framework of aeronautical engineering, where specific methods and analysis tools are introduced to size a new aircraft with the objective of developing a vehicle which outperforms existing ones in the same market segment. At the same time, an aircraft designer needs to be well skilled in all the fundamental aeronautical engineering disciplines (aerodynamics, propulsion, structures, systems and – last but not least - flight mechanics), in order to understand and handle all the available options for performing a given set of mission tasks. The course is aimed at introducing the student to this unique mix of specific expertize and multidisciplinary knowledge, challenging him/her with the development of a realistic design for a given set of (possibly competing) mission requirements.

At the end of the course the student is expected to

  • understand the relation between aircraft mission and its configuration, in qualitative as well as quantitative terms;
  • use this knowledge to perform, at a conceptual level, the preliminary sizing of a fixed wing aircraft as a function of a set of mission and regulatory requirements; draw a sketch by means of some Computer Aided Design tool; estimate performance and update the design, if necessary;
  • autonomously perform choices with respect to possible alternatives (e.g. type of engines, cabin layout, wing planform shape and position, etc.);
  • present and discuss the resulting design in a report and in oral form, providing adequate motivation for all the choices performed;
  • become aware of sources of information related to aircraft design, airworthiness, certification procedures, etc. deriving useful and reliable information for the design process.

The course is delivered with lectures and lab hours.

- Standard class lectures: the teacher presents methods and models for fixed wing aircraft conceptual design, spanning a wide range of (mainly civil) missions and configurations; aspects of conceptual design are introduced (preliminary sizing, engine and wing sizing, configuration lofting, performance evaluation, design iterations, cost estimate) at a general level; students are encouraged to participate by discussing design alternatives for each class of aircraft considered, origin of requirements, tradeoffs between competing requirements.

- Computer lab. classes: students learn the use of Raymer’s Design Software (RDS) for conceptual aircraft design with a “hands on” approach; they are instructed to use the RDS CAD tool and aerodynamic analysis tool.

Design contest: each year a design contest is proposed, focused on a particular class of civil aircraft; starting from a set of mission requirements, typical of the considered class, small groups of student (2 or 3) develop throughout the semester their own design, performing aircraft sizing, lofting, performance analysis, thus developing a realistic configuration and solving design tradeoffs between competing mission objective.

At the end of the semester each group presents its own design and a comparison among the resulting design is performed. Cooperation between team members is encouraged, but also information sharing between different groups.

The exam is oral.

The exam starts with a discussion of the project work carried out during the semester in order to assess

  • the capability of the student in analyzing the considered design example,
  • his/her awareness of the various alternatives available for the considered design and
  • his/her communication skills in discussing and supporting the choices done.

The oral exam also includes the discussion of more general aspects regarding aircraft design, when applied to different classes of aircraft, in order to assess the student’s ability to apply the same concepts to a different scenario.

  • Introduction to aircraft design and overview of the design process, from conceptual design through preliminary design to final detail design (6 hours)
  • Review of concepts of applied aerodynamics and aircraft configuration (6 hours)
  • Sizing from a conceptual sketch with determination of thrustto-weight ratio and wing loading and initial design iterations (6 hours)
  • Aircraft layout and lofting by RDS CAD tool (10 hours)
  • Propulsion and fuel system integration (4 hours)
  • Cost analysis and trade studies (4 hours)
  • Lab classes, with supervision and discussion of the design process (18 hours during the semester)
  • D. P. Raymer, Aircraft Design: a conceptual approach, AIAA Education Series, 2012
  • E. Torenbeek, Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Design, Propulsion and Performance, Springer, 1982
  • J. Roskam, Airplane Design (Parts 1 to 8), DAR Corporation, 1985
AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2023/2024

Anno di corso 1

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua

Percorso Percorso comune (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2023/2024

Anno di corso 1

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Lingua

Percorso CURRICULUM AEROSPACE DESIGN (A100)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2023/2024

Anno di corso 1

Semestre Primo Semestre (dal 18/09/2023 al 22/12/2023)

Lingua

Percorso CURRICULUM AEROSPACE TECHNOLOGY (A101)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2023/2024

Anno di corso 3

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua ITALIANO

Percorso CURRICULUM PROGETTAZIONE AEROSPAZIALE (A114)

Sede Brindisi

Buone conoscenze di fisica (meccanica in particolare), meccanica razionale e di calcolo integrale e differenziale.

La simulazione del volo rappresenta uno strumento indispensabile tanto per lo studio del comportamento dinamico di aeromobili ad ala fissa e ad ala rotante quanto per l'addestramento dei piloti. Il corso proporrà una descrizione dettagliata degli elementi fondamentali del simulatore, sia hardware che software, arrivando così a discutere tutti gli elementi fondamentali della dinamica del volo e del pilotaggio attraverso un approccio "hands on".

Il corso si propone di introdurre l’allievo alle tecniche di simulazione numerica adottate in campo aeronautico, per descrivere il comportamento dinamico di un velivolo.

Alla fine del corso gli allievi

  • comprendono  la relazione fra requisiti del simulatore in ambito addestrativo ed elementi architturali che lo compongono;
  • sviluppano competenze sufficienti a usare pacchetti SW disponibili, comprendendo le relazioni fra comandi del pilota e moto risultante del velivolo;
  • sono in grado di implementare in modo autonomo semplici simulatori al calcolatore, in ambiente Matlab/Simulink;
  • sanno presentare e discutere criticamente i risultati ottenuti sia da pacchetti SW disponibili che dai simulatori (elementari) sviluppati da loro;
  • sono consapevoli della rilevanza della simulazione come strumento di studio e addestramento.

Il corso verrà erogato con lezioni frontali in classe e in laboratorio in tre forme:

- lezioni frontali in aula, durante le quali l'insegnante presenta metodi e modelli; la classe viene invitata a partecipare alla discussione, analizzando la validità delle ipotesi alla base dei modelli proposti e interpretando il significato fisico dei risultati ottenuti;

- tutorial, che consentano di maturare competenze su linguaggi di programmazione, stumenti SW, metodi analitici e numerici alla base delle tecniche di simulazione del volo;

- laboratori, nell'ambito dei quali gli strumenti messi a punto durante i tutorial vengono utilizzati per sviluppare tutti gli elementi di un simulatore di volo elementare.

I risultati ottenuti durante i turtoial e i laboratori dovranno essere arricchiti tramite lavoro individuale a casa, e portare alla stesura di un rapporto che sarà discusso durante l'esame.

L'esame è orale.

Il colloquio parte con la discussione del report sviluppato durante il semestre per valutare

  • la capacità di analisi dei risultati ottenuti durante le attività in laboratorio;
  • la completezza dei risultati ottenuti attraverso il successivo lavoro individuale;
  • la capacità comunicativa nel discutere tali risultati e l'autonomia di giudizio rispetto alle problematiche poste dalla simulazione del volo (in particolare il trade-off fra semplicità /efficienza da un lato e fedeltà/complessità dall'altro).

L'esame includerà poi una discussione degli aspetti più generali riguardanti sia gli strumenti teorico-numerici alla base della simulazione quanto l'interpretazione fisica del comportamento dinamico di un aeromobile a partire dai risultati ottenuti da una simulazione.

  • Architettura del velivolo e descrizione dei suoi principali componenti e loro funzione [8 ore].
  • Il simulatore di volo (componenti di un simulatore in funzione della classe di certificazione; visualizzazione dello scenario e cockpit; sistemi di movimentazione a 3, 5 e 6 gradi di libertà) [4 ore].
  • Il modello dinamico del velivolo (carichi aerodinamici, propulsione ed equazioni del moto) [14 ore].

Tutorial

  • Fondamenti di calcolo numerico per la soluzione di equazioni differenziali ordinarie con introduzione all'uso di Matlab e Simulink  [8 ore]

Laboratori:

  • Utilizzo di un simulatore open-source come strumento per la comprensione degli aspetti fondamentali della dinamica del volo e del pilotaggio [8 ore];
  • Simulazione numerica in ambiente Matlab-Simulink di semplici sistemi dinamici [4 ore].
  • Sviluppo di un simulatore di volo in ambiente Matlab-Simulink [8 ore].

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Max Baarspul, A review of flight simulation techniques, Progress in Aerospace Sciences, Volume 27, Issue 1, 1990, Pages 1-120

LABORATORIO DI SIMULAZIONE DEL VOLO (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2021/2022

Year taught 2022/2023

Course year 2

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Good background in Flight Mechanics and Flight Dynamics, Aerospace Structures, Aerodynamics and Aeronautical Propulsion is strongly recommended.

Aircraft design is on one side a separate discipline in the framework of aeronautical engineering, where specific methods and analysis tools are introduced to size a new aircraft with the objective of developing a vehicle which outperforms existing ones in the same market segment. At the same time, an aircraft designer needs to be well skilled in all the fundamental aeronautical engineering disciplines (aerodynamics, propulsion, structures, systems and – last but not least - flight mechanics), in order to understand and handle all the available options for performing a given set of mission tasks. The course is aimed at introducing the student to this unique mix of specific expertize and multidisciplinary knowledge, challenging him/her with the development of a realistic design for a given set of (possibly competing) mission requirements.

At the end of the course the student is expected to

  • understand the relation between aircraft mission and its configuration, in qualitative as well as quantitative terms;
  • use this knowledge to perform, at a conceptual level, the preliminary sizing of a fixed wing aircraft as a function of a set of mission and regulatory requirements; draw a sketch by means of some Computer Aided Design tool; estimate performance and update the design, if necessary;
  • autonomously perform choices with respect to possible alternatives (e.g. type of engines, cabin layout, wing planform shape and position, etc.);
  • present and discuss the resulting design in a report and in oral form, providing adequate motivation for all the choices performed;
  • become aware of sources of information related to aircraft design, airworthiness, certification procedures, etc. deriving useful and reliable information for the design process.

The course is delivered with lectures and lab hours.

- Standard class lectures: the teacher presents methods and models for fixed wing aircraft conceptual design, spanning a wide range of (mainly civil) missions and configurations; aspects of conceptual design are introduced (preliminary sizing, engine and wing sizing, configuration lofting, performance evaluation, design iterations, cost estimate) at a general level; students are encouraged to participate by discussing design alternatives for each class of aircraft considered, origin of requirements, tradeoffs between competing requirements.

- Computer lab. classes: students learn the use of Raymer’s Design Software (RDS) for conceptual aircraft design with a “hands on” approach; they are instructed to use the RDS CAD tool and aerodynamic analysis tool.

Design contest: each year a design contest is proposed, focused on a particular class of civil aircraft; starting from a set of mission requirements, typical of the considered class, small groups of student (2 or 3) develop throughout the semester their own design, performing aircraft sizing, lofting, performance analysis, thus developing a realistic configuration and solving design tradeoffs between competing mission objective.

At the end of the semester each group presents its own design and a comparison among the resulting design is performed. Cooperation between team members is encouraged, but also information sharing between different groups.

The exam is oral.

The exam starts with a discussion of the project work carried out during the semester in order to assess

  • the capability of the student in analyzing the considered design example,
  • his/her awareness of the various alternatives available for the considered design and
  • his/her communication skills in discussing and supporting the choices done.

The oral exam also includes the discussion of more general aspects regarding aircraft design, when applied to different classes of aircraft, in order to assess the student’s ability to apply the same concepts to a different scenario.

  • Introduction to aircraft design and overview of the design process, from conceptual design through preliminary design to final detail design (6 hours)
  • Review of concepts of applied aerodynamics and aircraft configuration (6 hours)
  • Sizing from a conceptual sketch with determination of thrustto-weight ratio and wing loading and initial design iterations (6 hours)
  • Aircraft layout and lofting by RDS CAD tool (10 hours)
  • Propulsion and fuel system integration (4 hours)
  • Cost analysis and trade studies (4 hours)
  • Lab classes, with supervision and discussion of the design process (18 hours during the semester)
  • D. P. Raymer, Aircraft Design: a conceptual approach, AIAA Education Series, 2012
  • E. Torenbeek, Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Design, Propulsion and Performance, Springer, 1982
  • J. Roskam, Airplane Design (Parts 1 to 8), DAR Corporation, 1985
AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Lingua

Percorso Percorso comune (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Lingua

Percorso CURRICULUM AEROSPACE DESIGN (A100)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Lingua

Percorso CURRICULUM AEROSPACE TECHNOLOGY (A101)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2022/2023

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Lingua ITALIANO

Percorso CURRICULUM PROGETTAZIONE AEROSPAZIALE (A93)

Sede Brindisi

Buone conoscenze di fisica (meccanica in particolare), meccanica razionale e di calcolo integrale e differenziale.

La simulazione del volo rappresenta uno strumento indispensabile tanto per lo studio del comportamento dinamico di aeromobili ad ala fissa e ad ala rotante quanto per l'addestramento dei piloti. Il corso proporrà una descrizione dettagliata degli elementi fondamentali del simulatore, sia hardware che software, arrivando così a discutere tutti gli elementi fondamentali della dinamica del volo e del pilotaggio attraverso un approccio "hands on".

Il corso si propone di introdurre l’allievo alle tecniche di simulazione numerica adottate in campo aeronautico, per descrivere il comportamento dinamico di un velivolo.

Alla fine del corso gli allievi

  • comprendono  la relazione fra requisiti del simulatore in ambito addestrativo ed elementi architturali che lo compongono;
  • sviluppano competenze sufficienti a usare pacchetti SW disponibili, comprendendo le relazioni fra comandi del pilota e moto risultante del velivolo;
  • sono in grado di implementare in modo autonomo semplici simulatori al calcolatore, in ambiente Matlab/Simulink;
  • sanno presentare e discutere criticamente i risultati ottenuti sia da pacchetti SW disponibili che dai simulatori (elementari) sviluppati da loro;
  • sono consapevoli della rilevanza della simulazione come strumento di studio e addestramento.

Il corso verrà erogato con lezioni frontali in classe e in laboratorio in tre forme:

- lezioni frontali in aula, durante le quali l'insegnante presenta metodi e modelli; la classe viene invitata a partecipare alla discussione, analizzando la validità delle ipotesi alla base dei modelli proposti e interpretando il significato fisico dei risultati ottenuti;

- tutorial, che consentano di maturare competenze su linguaggi di programmazione, stumenti SW, metodi analitici e numerici alla base delle tecniche di simulazione del volo;

- laboratori, nell'ambito dei quali gli strumenti messi a punto durante i tutorial vengono utilizzati per sviluppare tutti gli elementi di un simulatore di volo elementare.

I risultati ottenuti durante i turtoial e i laboratori dovranno essere arricchiti tramite lavoro individuale a casa, e portare alla stesura di un rapporto che sarà discusso durante l'esame.

L'esame è orale.

Il colloquio parte con la discussione del report sviluppato durante il semestre per valutare

  • la capacità di analisi dei risultati ottenuti durante le attività in laboratorio;
  • la completezza dei risultati ottenuti attraverso il successivo lavoro individuale;
  • la capacità comunicativa nel discutere tali risultati e l'autonomia di giudizio rispetto alle problematiche poste dalla simulazione del volo (in particolare il trade-off fra semplicità /efficienza da un lato e fedeltà/complessità dall'altro).

L'esame includerà poi una discussione degli aspetti più generali riguardanti sia gli strumenti teorico-numerici alla base della simulazione quanto l'interpretazione fisica del comportamento dinamico di un aeromobile a partire dai risultati ottenuti da una simulazione.

  • Architettura del velivolo e descrizione dei suoi principali componenti e loro funzione [8 ore].
  • Il simulatore di volo (componenti di un simulatore in funzione della classe di certificazione; visualizzazione dello scenario e cockpit; sistemi di movimentazione a 3, 5 e 6 gradi di libertà) [4 ore].
  • Il modello dinamico del velivolo (carichi aerodinamici, propulsione ed equazioni del moto) [14 ore].

Tutorial

  • Fondamenti di calcolo numerico per la soluzione di equazioni differenziali ordinarie con introduzione all'uso di Matlab e Simulink  [8 ore]

Laboratori:

  • Utilizzo di un simulatore open-source come strumento per la comprensione degli aspetti fondamentali della dinamica del volo e del pilotaggio [8 ore];
  • Simulazione numerica in ambiente Matlab-Simulink di semplici sistemi dinamici [4 ore].
  • Sviluppo di un simulatore di volo in ambiente Matlab-Simulink [8 ore].

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Max Baarspul, A review of flight simulation techniques, Progress in Aerospace Sciences, Volume 27, Issue 1, 1990, Pages 1-120

LABORATORIO DI SIMULAZIONE DEL VOLO (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2020/2021

Year taught 2021/2022

Course year 2

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Location Brindisi

Good background in Flight Mechanics and Flight Dynamics, Aerospace Structures, Aerodynamics and Aeronautical Propulsion is strongly recommended.

Aircraft design is on one side a separate discipline in the framework of aeronautical engineering, where specific methods and analysis tools are introduced to size a new aircraft with the objective of developing a vehicle which outperforms existing ones in the same market segment. At the same time, an aircraft designer needs to be well skilled in all the fundamental aeronautical engineering disciplines (aerodynamics, propulsion, structures, systems and – last but not least - flight mechanics), in order to understand and handle all the available options for performing a given set of mission tasks. The course is aimed at introducing the student to this unique mix of specific expertize and multidisciplinary knowledge, challenging him/her with the development of a realistic design for a given set of (possibly competing) mission requirements.

At the end of the course the student is expected to

  • understand the relation between aircraft mission and its configuration, in qualitative as well as quantitative terms;
  • use this knowledge to perform, at a conceptual level, the preliminary sizing of a fixed wing aircraft as a function of a set of mission and regulatory requirements; draw a sketch by means of some Computer Aided Design tool; estimate performance and update the design, if necessary;
  • autonomously perform choices with respect to possible alternatives (e.g. type of engines, cabin layout, wing planform shape and position, etc.);
  • present and discuss the resulting design in a report and in oral form, providing adequate motivation for all the choices performed;
  • become aware of sources of information related to aircraft design, airworthiness, certification procedures, etc. deriving useful and reliable information for the design process.

The course is delivered with lectures and lab hours.

- Standard class lectures: the teacher presents methods and models for fixed wing aircraft conceptual design, spanning a wide range of (mainly civil) missions and configurations; aspects of conceptual design are introduced (preliminary sizing, engine and wing sizing, configuration lofting, performance evaluation, design iterations, cost estimate) at a general level; students are encouraged to participate by discussing design alternatives for each class of aircraft considered, origin of requirements, tradeoffs between competing requirements.

- Computer lab. classes: students learn the use of Raymer’s Design Software (RDS) for conceptual aircraft design with a “hands on” approach; they are instructed to use the RDS CAD tool and aerodynamic analysis tool.

Design contest: each year a design contest is proposed, focused on a particular class of civil aircraft; starting from a set of mission requirements, typical of the considered class, small groups of student (2 or 3) develop throughout the semester their own design, performing aircraft sizing, lofting, performance analysis, thus developing a realistic configuration and solving design tradeoffs between competing mission objective.

At the end of the semester each group presents its own design and a comparison among the resulting design is performed. Cooperation between team members is encouraged, but also information sharing between different groups.

The exam is oral.

The exam starts with a discussion of the project work carried out during the semester in order to assess

  • the capability of the student in analyzing the considered design example,
  • his/her awareness of the various alternatives available for the considered design and
  • his/her communication skills in discussing and supporting the choices done.

The oral exam also includes the discussion of more general aspects regarding aircraft design, when applied to different classes of aircraft, in order to assess the student’s ability to apply the same concepts to a different scenario.

  • Introduction to aircraft design and overview of the design process, from conceptual design through preliminary design to final detail design (6 hours)
  • Review of concepts of applied aerodynamics and aircraft configuration (6 hours)
  • Sizing from a conceptual sketch with determination of thrustto-weight ratio and wing loading and initial design iterations (6 hours)
  • Aircraft layout and lofting by RDS CAD tool (10 hours)
  • Propulsion and fuel system integration (4 hours)
  • Cost analysis and trade studies (4 hours)
  • Lab classes, with supervision and discussion of the design process (18 hours during the semester)
  • D. P. Raymer, Aircraft Design: a conceptual approach, AIAA Education Series, 2012
  • E. Torenbeek, Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Design, Propulsion and Performance, Springer, 1982
  • J. Roskam, Airplane Design (Parts 1 to 8), DAR Corporation, 1985
AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua

Percorso Percorso comune (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Lingua

Percorso CURRICULUM AEROSPACE DESIGN (A100)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 20/09/2021 al 17/12/2021)

Lingua

Percorso CURRICULUM AEROSPACE TECHNOLOGY (A101)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2021/2022

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso Currriculum aerospazio (A93)

Sede Brindisi

Buone conoscenze di fisica (meccanica in particolare), meccanica razionale e di calcolo integrale e differenziale.

La simulazione del volo rappresenta uno strumento indispensabile tanto per lo studio del comportamento dinamico di aeromobili ad ala fissa e ad ala rotante quanto per l'addestramento dei piloti. Il corso proporrà una descrizione dettagliata degli elementi fondamentali del simulatore, sia hardware che software, arrivando così a discutere tutti gli elementi fondamentali della dinamica del volo e del pilotaggio attraverso un approccio "hands on".

Il corso si propone di introdurre l’allievo alle tecniche di simulazione numerica adottate in campo aeronautico, per descrivere il comportamento dinamico di un velivolo.

Alla fine del corso gli allievi

  • comprendono  la relazione fra requisiti del simulatore in ambito addestrativo ed elementi architturali che lo compongono;
  • sviluppano competenze sufficienti a usare pacchetti SW disponibili, comprendendo le relazioni fra comandi del pilota e moto risultante del velivolo;
  • sono in grado di implementare in modo autonomo semplici simulatori al calcolatore, in ambiente Matlab/Simulink;
  • sanno presentare e discutere criticamente i risultati ottenuti sia da pacchetti SW disponibili che dai simulatori (elementari) sviluppati da loro;
  • sono consapevoli della rilevanza della simulazione come strumento di studio e addestramento.

Il corso verrà erogato con lezioni frontali in classe e in laboratorio in tre forme:

- lezioni frontali in aula, durante le quali l'insegnante presenta metodi e modelli; la classe viene invitata a partecipare alla discussione, analizzando la validità delle ipotesi alla base dei modelli proposti e interpretando il significato fisico dei risultati ottenuti;

- tutorial, che consentano di maturare competenze su linguaggi di programmazione, stumenti SW, metodi analitici e numerici alla base delle tecniche di simulazione del volo;

- laboratori, nell'ambito dei quali gli strumenti messi a punto durante i tutorial vengono utilizzati per sviluppare tutti gli elementi di un simulatore di volo elementare.

I risultati ottenuti durante i turtoial e i laboratori dovranno essere arricchiti tramite lavoro individuale a casa, e portare alla stesura di un rapporto che sarà discusso durante l'esame.

L'esame è orale.

Il colloquio parte con la discussione del report sviluppato durante il semestre per valutare

  • la capacità di analisi dei risultati ottenuti durante le attività in laboratorio;
  • la completezza dei risultati ottenuti attraverso il successivo lavoro individuale;
  • la capacità comunicativa nel discutere tali risultati e l'autonomia di giudizio rispetto alle problematiche poste dalla simulazione del volo (in particolare il trade-off fra semplicità /efficienza da un lato e fedeltà/complessità dall'altro).

L'esame includerà poi una discussione degli aspetti più generali riguardanti sia gli strumenti teorico-numerici alla base della simulazione quanto l'interpretazione fisica del comportamento dinamico di un aeromobile a partire dai risultati ottenuti da una simulazione.

  • Architettura del velivolo e descrizione dei suoi principali componenti e loro funzione [8 ore].
  • Il simulatore di volo (componenti di un simulatore in funzione della classe di certificazione; visualizzazione dello scenario e cockpit; sistemi di movimentazione a 3, 5 e 6 gradi di libertà) [4 ore].
  • Il modello dinamico del velivolo (carichi aerodinamici, propulsione ed equazioni del moto) [14 ore].

Tutorial

  • Fondamenti di calcolo numerico per la soluzione di equazioni differenziali ordinarie con introduzione all'uso di Matlab e Simulink  [8 ore]

Laboratori:

  • Utilizzo di un simulatore open-source come strumento per la comprensione degli aspetti fondamentali della dinamica del volo e del pilotaggio [8 ore];
  • Simulazione numerica in ambiente Matlab-Simulink di semplici sistemi dinamici [4 ore].
  • Sviluppo di un simulatore di volo in ambiente Matlab-Simulink [8 ore].

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Max Baarspul, A review of flight simulation techniques, Progress in Aerospace Sciences, Volume 27, Issue 1, 1990, Pages 1-120

LABORATORIO DI SIMULAZIONE DEL VOLO (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2019/2020

Year taught 2020/2021

Course year 2

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Language INGLESE

Subject matter Percorso comune (999)

Location Brindisi

Good background in Flight Mechanics and Flight Dynamics, Aerospace Structures, Aerodynamics and Aeronautical Propulsion is strongly recommended.

Aircraft design is on one side a separate discipline in the framework of aeronautical engineering, where specific methods and analysis tools are introduced to size a new aircraft with the objective of developing a vehicle which outperforms existing ones in the same market segment. At the same time, an aircraft designer needs to be well skilled in all the fundamental aeronautical engineering disciplines (aerodynamics, propulsion, structures, systems and – last but not least - flight mechanics), in order to understand and handle all the available options for performing a given set of mission tasks. The course is aimed at introducing the student to this unique mix of specific expertize and multidisciplinary knowledge, challenging him/her with the development of a realistic design for a given set of (possibly competing) mission requirements.

At the end of the course the student is expected to

  • understand the relation between aircraft mission and its configuration, in qualitative as well as quantitative terms;
  • use this knowledge to perform, at a conceptual level, the preliminary sizing of a fixed wing aircraft as a function of a set of mission and regulatory requirements; draw a sketch by means of some Computer Aided Design tool; estimate performance and update the design, if necessary;
  • autonomously perform choices with respect to possible alternatives (e.g. type of engines, cabin layout, wing planform shape and position, etc.);
  • present and discuss the resulting design in a report and in oral form, providing adequate motivation for all the choices performed;
  • become aware of sources of information related to aircraft design, airworthiness, certification procedures, etc. deriving useful and reliable information for the design process.

The course is delivered with lectures and lab hours.

- Standard class lectures: the teacher presents methods and models for fixed wing aircraft conceptual design, spanning a wide range of (mainly civil) missions and configurations; aspects of conceptual design are introduced (preliminary sizing, engine and wing sizing, configuration lofting, performance evaluation, design iterations, cost estimate) at a general level; students are encouraged to participate by discussing design alternatives for each class of aircraft considered, origin of requirements, tradeoffs between competing requirements.

- Computer lab. classes: students learn the use of Raymer’s Design Software (RDS) for conceptual aircraft design with a “hands on” approach; they are instructed to use the RDS CAD tool and aerodynamic analysis tool.

Design contest: each year a design contest is proposed, focused on a particular class of civil aircraft; starting from a set of mission requirements, typical of the considered class, small groups of student (2 or 3) develop throughout the semester their own design, performing aircraft sizing, lofting, performance analysis, thus developing a realistic configuration and solving design tradeoffs between competing mission objective.

At the end of the semester each group presents its own design and a comparison among the resulting design is performed. Cooperation between team members is encouraged, but also information sharing between different groups.

The exam is oral.

The exam starts with a discussion of the project work carried out during the semester in order to assess

  • the capability of the student in analyzing the considered design example,
  • his/her awareness of the various alternatives available for the considered design and
  • his/her communication skills in discussing and supporting the choices done.

The oral exam also includes the discussion of more general aspects regarding aircraft design, when applied to different classes of aircraft, in order to assess the student’s ability to apply the same concepts to a different scenario.

  • Introduction to aircraft design and overview of the design process, from conceptual design through preliminary design to final detail design (6 hours)
  • Review of concepts of applied aerodynamics and aircraft configuration (6 hours)
  • Sizing from a conceptual sketch with determination of thrustto-weight ratio and wing loading and initial design iterations (6 hours)
  • Aircraft layout and lofting by RDS CAD tool (10 hours)
  • Propulsion and fuel system integration (4 hours)
  • Cost analysis and trade studies (4 hours)
  • Lab classes, with supervision and discussion of the design process (18 hours during the semester)
  • D. P. Raymer, Aircraft Design: a conceptual approach, AIAA Education Series, 2012
  • E. Torenbeek, Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Design, Propulsion and Performance, Springer, 1982
  • J. Roskam, Airplane Design (Parts 1 to 8), DAR Corporation, 1985
AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Language INGLESE

Subject matter Percorso comune (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Language INGLESE

Subject matter CURRICULUM AEROSPACE TECHNOLOGY (A101)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Primo Semestre (dal 22/09/2020 al 18/12/2020)

Language INGLESE

Subject matter CURRICULUM AEROSPACE DESIGN (A100)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
LABORATORIO DI SIMULAZIONE DEL VOLO

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2020/2021

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Lingua ITALIANO

Percorso Currriculum aerospazio (A93)

Sede Brindisi

Buone conoscenze di fisica (meccanica in particolare), meccanica razionale e di calcolo integrale e differenziale.

La simulazione del volo rappresenta uno strumento indispensabile tanto per lo studio del comportamento dinamico di aeromobili ad ala fissa e ad ala rotante quanto per l'addestramento dei piloti. Il corso proporrà una descrizione dettagliata degli elementi fondamentali del simulatore, sia hardware che software, arrivando così a discutere tutti gli elementi fondamentali della dinamica del volo e del pilotaggio attraverso un approccio "hands on".

Il corso si propone di introdurre l’allievo alle tecniche di simulazione numerica adottate in campo aeronautico, per descrivere il comportamento dinamico di un velivolo.

Alla fine del corso gli allievi

  • comprendono  la relazione fra requisiti del simulatore in ambito addestrativo ed elementi architturali che lo compongono;
  • sviluppano competenze sufficienti a usare pacchetti SW disponibili, comprendendo le relazioni fra comandi del pilota e moto risultante del velivolo;
  • sono in grado di implementare in modo autonomo semplici simulatori al calcolatore, in ambiente Matlab/Simulink;
  • sanno presentare e discutere criticamente i risultati ottenuti sia da pacchetti SW disponibili che dai simulatori (elementari) sviluppati da loro;
  • sono consapevoli della rilevanza della simulazione come strumento di studio e addestramento.

Il corso verrà erogato con lezioni frontali in classe e in laboratorio in tre forme:

- lezioni frontali in aula, durante le quali l'insegnante presenta metodi e modelli; la classe viene invitata a partecipare alla discussione, analizzando la validità delle ipotesi alla base dei modelli proposti e interpretando il significato fisico dei risultati ottenuti;

- tutorial, che consentano di maturare competenze su linguaggi di programmazione, stumenti SW, metodi analitici e numerici alla base delle tecniche di simulazione del volo;

- laboratori, nell'ambito dei quali gli strumenti messi a punto durante i tutorial vengono utilizzati per sviluppare tutti gli elementi di un simulatore di volo elementare.

I risultati ottenuti durante i turtoial e i laboratori dovranno essere arricchiti tramite lavoro individuale a casa, e portare alla stesura di un rapporto che sarà discusso durante l'esame.

L'esame è orale.

Il colloquio parte con la discussione del report sviluppato durante il semestre per valutare

  • la capacità di analisi dei risultati ottenuti durante le attività in laboratorio;
  • la completezza dei risultati ottenuti attraverso il successivo lavoro individuale;
  • la capacità comunicativa nel discutere tali risultati e l'autonomia di giudizio rispetto alle problematiche poste dalla simulazione del volo (in particolare il trade-off fra semplicità /efficienza da un lato e fedeltà/complessità dall'altro).

L'esame includerà poi una discussione degli aspetti più generali riguardanti sia gli strumenti teorico-numerici alla base della simulazione quanto l'interpretazione fisica del comportamento dinamico di un aeromobile a partire dai risultati ottenuti da una simulazione.

  • Architettura del velivolo e descrizione dei suoi principali componenti e loro funzione [8 ore].
  • Il simulatore di volo (componenti di un simulatore in funzione della classe di certificazione; visualizzazione dello scenario e cockpit; sistemi di movimentazione a 3, 5 e 6 gradi di libertà) [4 ore].
  • Il modello dinamico del velivolo (carichi aerodinamici, propulsione ed equazioni del moto) [14 ore].

Tutorial

  • Fondamenti di calcolo numerico per la soluzione di equazioni differenziali ordinarie con introduzione all'uso di Matlab e Simulink  [8 ore]

Laboratori:

  • Utilizzo di un simulatore open-source come strumento per la comprensione degli aspetti fondamentali della dinamica del volo e del pilotaggio [8 ore];
  • Simulazione numerica in ambiente Matlab-Simulink di semplici sistemi dinamici [4 ore].
  • Sviluppo di un simulatore di volo in ambiente Matlab-Simulink [8 ore].

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Max Baarspul, A review of flight simulation techniques, Progress in Aerospace Sciences, Volume 27, Issue 1, 1990, Pages 1-120

LABORATORIO DI SIMULAZIONE DEL VOLO (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2018/2019

Year taught 2019/2020

Course year 2

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

Good background in Flight Mechanics and Flight Dynamics, Aerospace Structures, Aerodynamics and Aeronautical Propulsion is strongly recommended.

Aircraft design is on one side a separate discipline in the framework of aeronautical engineering, where specific methods and analysis tools are introduced to size a new aircraft with the objective of developing a vehicle which outperforms existing ones in the same market segment. At the same time, an aircraft designer needs to be well skilled in all the fundamental aeronautical engineering disciplines (aerodynamics, propulsion, structures, systems and – last but not least - flight mechanics), in order to understand and handle all the available options for performing a given set of mission tasks. The course is aimed at introducing the student to this unique mix of specific expertize and multidisciplinary knowledge, challenging him/her with the development of a realistic design for a given set of (possibly competing) mission requirements.

At the end of the course the student is expected to

  • understand the relation between aircraft mission and its configuration, in qualitative as well as quantitative terms;
  • use this knowledge to perform, at a conceptual level, the preliminary sizing of a fixed wing aircraft as a function of a set of mission and regulatory requirements; draw a sketch by means of some Computer Aided Design tool; estimate performance and update the design, if necessary;
  • autonomously perform choices with respect to possible alternatives (e.g. type of engines, cabin layout, wing planform shape and position, etc.);
  • present and discuss the resulting design in a report and in oral form, providing adequate motivation for all the choices performed;
  • become aware of sources of information related to aircraft design, airworthiness, certification procedures, etc. deriving useful and reliable information for the design process.

The course is delivered with lectures and lab hours.

- Standard class lectures: the teacher presents methods and models for fixed wing aircraft conceptual design, spanning a wide range of (mainly civil) missions and configurations; aspects of conceptual design are introduced (preliminary sizing, engine and wing sizing, configuration lofting, performance evaluation, design iterations, cost estimate) at a general level; students are encouraged to participate by discussing design alternatives for each class of aircraft considered, origin of requirements, tradeoffs between competing requirements.

- Computer lab. classes: students learn the use of Raymer’s Design Software (RDS) for conceptual aircraft design with a “hands on” approach; they are instructed to use the RDS CAD tool and aerodynamic analysis tool.

Design contest: each year a design contest is proposed, focused on a particular class of civil aircraft; starting from a set of mission requirements, typical of the considered class, small groups of student (2 or 3) develop throughout the semester their own design, performing aircraft sizing, lofting, performance analysis, thus developing a realistic configuration and solving design tradeoffs between competing mission objective.

At the end of the semester each group presents its own design and a comparison among the resulting design is performed. Cooperation between team members is encouraged, but also information sharing between different groups.

The exam is oral.

The exam starts with a discussion of the project work carried out during the semester in order to assess

  • the capability of the student in analyzing the considered design example,
  • his/her awareness of the various alternatives available for the considered design and
  • his/her communication skills in discussing and supporting the choices done.

The oral exam also includes the discussion of more general aspects regarding aircraft design, when applied to different classes of aircraft, in order to assess the student’s ability to apply the same concepts to a different scenario.

  • Introduction to aircraft design and overview of the design process, from conceptual design through preliminary design to final detail design (6 hours)
  • Review of concepts of applied aerodynamics and aircraft configuration (6 hours)
  • Sizing from a conceptual sketch with determination of thrustto-weight ratio and wing loading and initial design iterations (6 hours)
  • Aircraft layout and lofting by RDS CAD tool (10 hours)
  • Propulsion and fuel system integration (4 hours)
  • Cost analysis and trade studies (4 hours)
  • Lab classes, with supervision and discussion of the design process (18 hours during the semester)
  • D. P. Raymer, Aircraft Design: a conceptual approach, AIAA Education Series, 2012
  • E. Torenbeek, Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Design, Propulsion and Performance, Springer, 1982
  • J. Roskam, Airplane Design (Parts 1 to 8), DAR Corporation, 1985
AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2019/2020

Year taught 2019/2020

Course year 1

Language INGLESE

Subject matter Percorso comune (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2019/2020

Year taught 2019/2020

Course year 1

Semestre Primo Semestre (dal 23/09/2019 al 20/12/2019)

Language INGLESE

Subject matter DESIGN (A101)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2017/2018

Year taught 2018/2019

Course year 2

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Owner professor Giulio AVANZINI

Teaching hours Ore totali di attività frontale: 60.0

  Ore erogate dal docente Giulio AVANZINI: 54.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical dynamics are highly recommentded.

The course is aimed at introducing the student to the methods for modeling the dynamic behavior of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial characteristics. Based on models derived on first principles, the students will learn the tools necessary for the determination of aircraft characteristics in terms of static and dynamic stability and response to controls. The course is focused on the dyanmics of rigid aircraft. Effects of structural deformation on stability and control are introduced at an elementary level. A few notion on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude dynamics and control are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, maturing the capabilitiy of interpreting aircraft and spacecraft motion as a function of controls.

A the end of the course the student is ecpected to be able to

1)   determine trim conditions, aircraft stability and response to controls for conventional configurations;

2)   understand basic features of rotary wing aircraft dynamics and its response to controls;

3)   understand basic features of rigid spacecraft dynamics and how to control it;

4)   handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expression of aircraft neutral point;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; example: evaluate aircraft response in simulation for differnet control inputs.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The exam is oral.

The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools.

The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.

Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Equations of motion for rigid aircraft (4 hours).
  • Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim; directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
  • Tutorials on trim curves and static stability (4 hours)
  • Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal dynamics; lateral-directional dyanmics (16 hours)
  • Tutorials on dynamic stability and response to controls (4 hours)
  • Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
  • Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
  • Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
  • Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
  • Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
  • Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)

Flight Dynamics

B. Etkin. Dynamics of Atmospheric Flight. Dover, 2005 (original hardcover edition: , J. Wiley & Sons, 1972)

B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003

R.F. Stengel. Flight Dynamics, Princeton University Press, 2004

G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014

M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.

 

In Italiano

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.

 

Handbooks on spacecraft attitude dynamics and control

Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

P.C. Hughes. Spacecraft Attitude Dynamics, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

 

In Italiano

 

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

 

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 60.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Primo Semestre (dal 24/09/2018 al 21/12/2018)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 60.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Primo Semestre (dal 24/09/2018 al 21/12/2018)

Language INGLESE

Subject matter MAIN COURSE (A58)

Good knowledge of physics (mechanics, in particular), analytical mechanics and basic tools of calculus are necessary.

The course is aimed at introducing the student to the methods for estimating aircraft performance as a function of aerodynamic configuration and propulsion system. Based on models derived from first principles, the students will learn how to evaluate fixed-wing aircraft range and endurance, flight envelope, take-off and landing distance, climb and turn performance. The course is mainly focused on rigid fixed-wing aircraft, but a few notion on rotorcraft performance and space flight mechanics (orbits, orbit perturbations and orbital maneuvers) are also provided.

Tutorials will allow the students to apply the notions learned to representative examples and case studies, developing the capabilitiy of solving simple problems and write computer programs that allow for a systematic analysis of the relation between aircraft characteristics and its expected behavior.

At the end of the course the student is expected to

1)   understand the relations between aircraft configuration, mission requirements and expected performance;

2)   evaluate performance from the knowledge of aerodynamic and propulsion characteristics;

3)   understand basic features of rotary wing aircraft configurations and evaluate their performance;

4)   understand basic features of space flight mechanics;

5)   handle mathematical tools and write simple software programs in order to develop the ability for quantitative analysis of aircraft behavior as a function of design parameters.

The course is delivered with class and laboratory activities, in three different forms:

- standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; example: derive the expressions for minimum and maximum airspeed of a turbojet aircraft;

- tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; example: evaluate minimum and maximum airspeed of a turbojet aircraft at a given altitude, knowing maximum thrust-to-weight ratio and aerodynamic coefficients;

- computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, in order to assess aircraft performance for a wider range of design variables; example: plot the flight envelope of a turbojet aircraft in the altitude vs airspeed plane.

Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.

The written test is divided into 2 parts.

Part 1, to be completed in 90 minutes, without using books or lecture notes:

- 2 theoretical questions, that require analytic evaluation of some physical facts regarding aircraft performance and/or dynamics;

- 2 descriptive questions, where the student is required to demonstrate his understanding of some specific facts of aircraft configuration, systems or features of its dynamic behaviour;

Part 2, to be completed in 60 minutes, using books and/or lecture notes:

- 2 problems, where the students prove their ability in quantitavely evaluating aircraft performance from its geometrical, inertial and aerodynamic characteristics.

The use of programmable devices and/or devices connected to the internet is strictly forbidden.

Calculations can be performed by means of a non-programmable scientific calculator.

 

The oral exam starts with the discussion of the results of homeworks and activities performed in the computer lab., collected in a report, in order to assess the capability of the student in solving more complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or spreadsheet.

The oral exam also includes the discussion of more general aspects regarding aircraft configuration or performance, in the large.

Exam diets are performed according to current University regulations (3 exam dates at the end of each semester, 1 exam date in September, 2 extraordinaty exam dates for students who finished the regular course).

Exact dates are provided on the University website, as soon as they are available.

Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e-mail (indirizzo istituzionale giulio.avanzini@unisalento.it).

Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

  • Fixed wing aircraft: configurations, applied aerodynamics and basic facts (8 hours)
  • International Standard atmosphere and on-board instruments (4 hours)
  • Performance Analysis: steady state flight; gliding flight; flight envelope; propulsion systems and propellers; cruise; climbing flight; maneuvers and turning flight; take-off and landing (12 hours)
  • Tutorials on performance evaluation (10 hours)
  • Project 1: Determination of the balanced field length (2 hours)
  • Project 2: Optimal climb strategy for supersonic aircraft (2 hours)
  • Rotary-wing aircraft: configuration and commands; actuator disk theory; required power estimate (4 hours).
  • Keplerian orbits (3 hours). Space environment and orbit perturbations (2 hours). Orbit maneuvers (3 hours).
  • Project 3: Laboratory on basic facts on orbit dynamics and orbit transfers (4 hours)

Introduction to Aeronautics

Darrol Stinton. The Anatomy of the Aeroplane, 2nd ed., Blackwell science, 1998

E. Torenbeek. Flight Physiscs, Springer, 2009

Holt Ashley. Engineering Analysis of Flight Vehicles, Dover, 1992

Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics, J. Wiley & Sons, 1994

Richard Von Mises, Theory of Flight, Dover, 1959

Daniel P. Raymer. Aircraft design: a conceptual approach, 4th ed., AIAA Education Series, 2006

 

Performance

Francis J. Hale. Introduction to Aircraft Performance, Selection and Design. J. Wiley & Sons, 1984

J. D. Anderson jr. Aircraft Performance and design, McGraw Hill, 1999

J.B. Russell. Performance and Stability of Aircraft, Arnold, 1996

Nguyen X. Vinh. Flight Mechanics of High Performance Aircraft, Cambridge University Press, 1995

D.R., Kermode (R.H., Philpott and A.C. Barnard editors). Mechanics of Flight, 11th ed. Prentice Hall, 2006

 

In Italiano

A. Lausetti e F. Filippi. Elementi di Meccanica del Volo. Levrotto e Bella, 1956

M. Calcara, Elementi di Dinamica del Velivolo, Edizioni CUEN, Napoli, 1988

M. Venuti, Aerodinamica Oggi, TOTEM, 2002

G. Guglieri. Introduzione alla Meccanica del Volo. CELID, 2005

 

Suggested readings from…

M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made Aviation Possible. Cambridge University Press, 1997.


 

 

Handbooks on space flight mechanics (orbital dynamics and orbit maneuvers

R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1987

Roger B. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover, 1971

D.A. Vallado. Fundamentals of Astrodynamics and Applications, Microcosm Press, 2013

F.P.J. Rimrott, Introductory Orbit Dynamics, Vieweg, 1989

 

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale,Pisa University Press, 2013

 

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2016/2017

Year taught 2017/2018

Course year 2

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

AIRCRAFT DESIGN (ING-IND/03)
ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Language INGLESE

Subject matter PERCORSO COMUNE (999)

ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Language INGLESE

Subject matter MAIN COURSE (A58)

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
FLIGHT MECHANICS (MOD.2) C.I.

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

FLIGHT MECHANICS (MOD.2) C.I. (ING-IND/03)
PRINCIPI DI INGEGNERIA AEROSPAZIALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2017/2018

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Brindisi

PRINCIPI DI INGEGNERIA AEROSPAZIALE (ING-IND/03)
AIRCRAFT DESIGN

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 6.0

Teaching hours Ore totali di attività frontale: 54.0

For matriculated on 2015/2016

Year taught 2016/2017

Course year 2

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Language INGLESE

Subject matter AEROSPACE DESIGN (A59)

Location Brindisi

AIRCRAFT DESIGN (ING-IND/03)
FLIGHT MECHANICS

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2016/2017

Year taught 2016/2017

Course year 1

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Brindisi

FLIGHT MECHANICS (ING-IND/03)
PRINCIPI DI INGEGNERIA AEROSPAZIALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2016/2017

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

PRINCIPI DI INGEGNERIA AEROSPAZIALE (ING-IND/03)
AIRCRAFT DESIGN

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso AEROSPACE DESIGN (A59)

Sede BRINDISI

AIRCRAFT DESIGN (ING-IND/03)
FLIGHT MECHANICS

Degree course AEROSPACE ENGINEERING

Subject area ING-IND/03

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2015/2016

Year taught 2015/2016

Course year 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Brindisi

FLIGHT MECHANICS (ING-IND/03)
PRINCIPI DI INGEGNERIA AEROSPAZIALE

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2015/2016

Anno di corso 3

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

PRINCIPI DI INGEGNERIA AEROSPAZIALE (ING-IND/03)
AIRCRAFT DESIGN

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/04

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso AEROSPACE DESIGN (A59)

Sede BRINDISI

AIRCRAFT DESIGN (ING-IND/04)
FLIGHT MECHANICS

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

FLIGHT MECHANICS (ING-IND/03)
FLIGHT MECHANICS

Corso di laurea AEROSPACE ENGINEERING

Settore Scientifico Disciplinare ING-IND/03

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede BRINDISI

FLIGHT MECHANICS (ING-IND/03)

Tesi

LAUREA IN AEROSPACE ENGINEERING(II livello)

1) Design of electrically operated and hybrid aircraft

The study aims at developing criteria for the design of electrically operated and hybrid fixed- and rotary-wing aircraft (including multi-rotor platforms). The use of evolutionary optimization algorithms will allow to systematically search the space of design variables, in order to provide a configuration tailored for the vehicle operator needs, including the analysis of possible tradeoffs between competing performance indexes.

2) Spacecraft attitude dynamics and control

Attitude dynamics and control represents one of the crucial aspects in the design of satellites, that need to aim a sensor, an antenna or a nozzle in a prescribed direction in the presence of environmental disturbance and operational limitation (sensor resolution and precision, latency time, optical obstacles, etc.). In the presence of failure, this task may become even more difficult. Several thesis are available on the subject: 

2.a) Spacecraft attitude control by means of magnetic actuators

2.b) Spacecraft attitude control by means of an under-actuated cluster of reaction wheels  

2.c) Spacecraft attitude control by means of an under-actuated cluster of control moment gyroscopes

2.d) Attitude control of large deformable space structures

3) UTM: Unmanned Aerial Vehicle Traffic Management vs Unified Traffic Management

The thesis aims at developing a study which critically analyzes two scenarios for the use of remotely piloted and possibly autonomous aerial vehicles in the airspace. In the first one, Unmanned Aerial Vehicle Traffic Management paradigm requires that two separate regions are devoted to unmanned and conventional aircraft, thus inherently limiting the possibility of a conflict. In the second case, a unique airspace is considered, where unmanned and conventional aircraft coexists. Challenges and opportunities for both options need to be carefully analyzed in order to achieve an acceptable level of safety, without jeopardizing the commercial potential of unmanned aircraft operations in the civil airspace. 

4) Unmanned Aerial Vehicles critical operations: planning and control

This study aims at determining rigorous procedures for planning UAV missions over populated areas. A risk analysis algorithm is the starting point of the study, with a planning algorithm. Both elements need to be improved in terms of numerical efficiency and generalized, in order to account for different operational scenarios. The thesis will thus help in developing a mission planning tools with the objective of identifying

a) the most accurate and reliable statistical representation of impact footprints after catastrophic failure for fixed- and rotary-wing aircraft, in the presence of environmental disturbance (wind and turbulence);

b) the most promising and efficient numerical techniques for trajectory planning, which allows for maintain risk below a prescribed, acceptable level.

5) Flight simulation of unconventional configurations

The thesis will be focused on the application of flight simulation tools for the analysis of non-conventional configurations, with a focus on two classes of vehicles:

a) vehicles for suborbital flights

b) electrically powered aircraft with distributed propulsion systems

c) very flexible high altitude very long endurance platforms

6) Flight dynamics and control of rotorcraft with suspended loads

A dynamic model of a rotorcraft with a suspended load will be developed and ad hoc control techniques will be envisaged for the determination of a control action which results into the suspended load following a prescribed pattern.

7) Design of a dedicated rocket launcher for small-size satellites

The proposal aims at the analysis and the preliminary sizing of rocket launchers, dedicated to orbit injection of small size spacecraft (mini-, micro-, nano-, and pico-satellites). Unconventional launch operations (e.g. airborn launch or launch from a stratospheric balloon) will be considered among possible options and critically evaluated.

 

LAUREA IN INGEGNERIA INDUSTRIALE (I livello)

1) Analisi delle prestazioni di velivoli elettrici

La tesi si propone di rielaborare i concetti classici di autonomia chilometrica per velivoli a propulsione elettrica (ovvero velivoli a elica mossi da un motore elettrico collegato a una batteria), sia nel caso di velivoli ad ala fissa che di quelli ad ala rotante (incluse le piattaforme multirotore). Lo studio dovrà mettere in luce l'impatto delle caratteristiche di scarica della batteria sulle prestazioni valutate e fornire linee guida per il progetto di questa classe di velivoli, in funzione del carico pagante trasportato.

2) Il volo suborbitale

Il volo suborbitale si è recentemente affermato come una possibile via per l'accesso "low cost" allo spazio, sia per missioni scientifiche in microgravità di breve durata (5-10 minuti) sia per il cosiddetto turismo spaziale. In questo ambito sono disponibili diverse tesi con i seguenti argomenti:

2.a) Analisi del profilo di missione per il volo suborbitale con analisi di criticità e ricerca di potenziali miglioramenti

2.b) La sicurezza nel volo suborbitale (con focus sull'affidabilità dei velivoli impiegati)

2.c) La sicurezza nel volo suborbitale (con focus sui terzi sorvolati)

3) Analisi di rischio per l'impiego di velivoli senza pilota su aree aibtate

Lo studio si propone di applicare metodologie statistiche per definire procedure che consentano di valutare il rischio che caratterizza l'impiego di aeromobili a pilotaggio remoto in operazioni critiche, ovvero operazioni su o in prossimità di zone abitate.

Temi di ricerca

L'attività di ricerca, presentata in più di 100 lavori, di cui 50 su riviste internazionali, riguarda diversi campi della meccanica del volo atmosferico e spaziale, nonché alcuni aspetti di ingegneria navale, legati soprattutto alle prove sperimentali in vasca e allo sviluppo di mezzi autonomi, aerei e marini:

MECCANICA DEL VOLO ATMOSFERICO

- applicazione della teoria dei sistemi dinamici e dell'analisi di biforcazione allo studio al comportamento di velivoli ad alte incidenze;

- simulazione diretta e inversa con applicazione di tecniche di separazione delle scale temporali e approssimazione geometrica della traiettoria;

- dinamica di velivoli ad fissa e rotante; 

- volo autonomo, con lo sviluppo di un velivolo a pilotaggio remoto con rotori intubati; 

- analisi delle qualità di volo e simulazione di veicoli di rientro (volo ipersonico e atterraggio con paracadute); 

- sistemi di realtà aumentata per il pilotaggio.

MECCANICA ORBITALE E DINAMICA E CONTROLLO DI ASSETTO

- dinamica e controllo di assetto di satelliti;

- volo in formazione di satelliti (ivi include formazioni tethered);

- ottimizzazione di manovre orbitali tramite algoritmi evolutivi; 

- approssimazione di traiettorie a bassa spinta.

INGEGNERIA NAVALE E MEZZI AUTONOMI MARINI

- analisi di incertezza per prove sperimentali in vasca; definizione di procedure sperimentali per validazione di codici di fluidodinamica numerica;

- controllo di veicoli autonomi subacquei e di superficie.

Risorse correlate

Documenti