ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Insegnamento
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH
Insegnamento in inglese
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH
Settore disciplinare
ING-INF/02
Corso di studi di riferimento
COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES
Tipo corso di studio
Laurea Magistrale
Crediti
6.0
Ripartizione oraria
Ore Attività Frontale: 54.0
Anno accademico
2018/2019
Anno di erogazione
2019/2020
Anno di corso
2
Lingua
ITALIANO
Percorso
PERCORSO COMUNE
Docenti responsabili dell'erogazione
CATARINUCCI Luca
MONTI GIUSEPPINA
Sede
Lecce

Descrizione dell'insegnamento

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market. Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed. "Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative

At the end of the course the student should be able to: - Apply the basic concepts of electromagnetism. - Set up high frequency device designs based on requirements. - Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas. - Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies

Frontal lessons, practical exercitations, laboratory activities

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1

(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity).

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2

(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3

(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

 

PART 4

(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

 

PART 5

(6 hours of scientific seminars)

Seminars from the business and research world. 

Main course book:

[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:

[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000

[3] A. Paraboni, Antenne, Mc Graw-Hill

Semestre
Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Tipo esame
Non obbligatorio

Valutazione
Orale - Voto Finale

Orario dell'insegnamento
https://easyroom.unisalento.it/Orario

Scarica scheda insegnamento (Apre una nuova finestra)(Apre una nuova finestra)