AEROSPACE ENGINEERING (LM52)

(Brindisi - Università degli Studi)

Teaching SPACE PROPULSION MOD. 2	Teaching in italian SPACE PROPULSION Course year 1 MOD. 2	
	Teaching SPACE PROPULSION MOD. 2	Language ENGLISH
GenCod A003310	SSD code ING-IND/07	Curriculum PERCORSO COMUNE
Owner professor Maria Grazia DE GIORGI	Reference course AEROSPACE ENGINEERING	
	Course type Laurea Magistrale	Location Brindisi
	Credits 6.0	Semester
	Teaching hours Front activity hours: 54.0	Exam type Oral
	For enrolled in 2017/2018	Assessment
	Taught in 2017/2018	Course timetable https://easyroom.unisalento.it/Orario

BRIEF COURSE DESCRIPTION	This course presents aerospace propulsive devices with particular focus on rocket engine	
REQUIREMENTS	-Fluid dynamic and fluid machinery	
COURSE AIMS	 Gain knowledge of different types of aero-engines (turbojets, turbofans, ramjets) and to understand the aerodynamic and thermodynamic characteristics of major rocket components. Develop the knowledge and skills to analytically and numerically solve problems related to aerospace propulsion systems. Develop skills in working independently. Develop skills in critical evaluation of scientific literature. Develop skills in planning and presentation of scientific talks and reports. 	
TEACHING METHODOLOGY	Theory and practical activities	
ASSESSMENT TYPE	The final exam consist of two part: 1)Written and oral examination covering all material covered in course 2)assignments and individual project	

FULL SYLLABUS

Rocket Nozzles and Thrust Performance and nozzle design. Convective Heat Transfer

Combustion and Thermochemistry

Perfect gas law and thermodynamics review,equilibrium Thermochemistry, adiabatic flame temperature calculations, non-Equilibrium Flows. Rocket nozzle thermochemistry.

Solid Rocket Motors

General description, interior ballistics, component design goals and constraints.

Liquid Rocket Motors

General description, engine cycles, power balance calculations, component design fundamentals. Combustion of Liquid Propellants ; Injection and Mixing ; Stability; Pressurization and Pump Cycles; Turbomachinery Performance

Trajectory Analysis and staging

The rocket equation, vertical trajectories, multistage rockets.

Electric Propulsion General description and classification of electric propulsion systems, performance analysis.

Hybrid rockets Classification, Challenges, and Advantages of Hybrids

REFERENCE TEXT BOOKS

• Aerothermodynamics of Gas Turbine and Rocket Propulsion Gordon C. Oates eISBN: 978-1-60086-134-5 print ISBN: 978-1-56347-241-1 DOI: 10.2514/4.861345

• Hill, P., and Peterson, C., Mechanics and Thermodynamics of Propulsion, Addison-Wesley Publishing Co., 1992,

• George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, 7th Edition John-Wiley & Sons, Ltd., ISBN: 0-471-32642-9

Course note

