AEROSPACE ENGINEERING (LM52) (Brindisi - Università degli Studi) | Teaching AERONAUTIC | Teaching in italian AERONAUTIC PROPULSION MOD. 1 C.I. | Course year 1 | |---|--|---| | PROPULSION MOD. 1 | Teaching AERONAUTIC PROPUL MOD. 1 | SION Language ENGLISH | | GenCod A003309 | SSD code ING-IND/07 | Curriculum PERCORSO COMUNE | | Owner professor Maria Grazia DE
GIORGI | Reference course AEROSPACE ENGINEERING | | | dional | Course type Laurea Magistrale | Location Brindisi | | | Credits 6.0 | Semester First Semester | | | Teaching hours Front activity ho 54.0 | urs: Exam type Oral | | | For enrolled in 2018/2019 | Assessment | | | Taught in 2018/2019 | Course timetable
https://easyroom.unisalento.it/Orario | | BRIEF COURSE
DESCRIPTION | This course presents aerospace propulsive devices with particular focus on air-breathing engine | | | REQUIREMENTS | -Fluid dynamic and fluid machinery | | | COURSE AIMS | Gain knowledge of different types of aero-engines (turbojets, turbofans, ramjets) and to understand the aerodynamic and thermodynamic characteristics of major engine components. Develop the knowledge and skills to analytically and numerically solve problems related to aerospace propulsion systems. Develop skills in working independently. Develop skills in critical evaluation of scientific literature. Develop skills in planning and presentation of scientific talks and reports. | | | TEACHING METHODOLOGY | Theory and practical activities (Tutorials devoted to discussion and problem solving referred to the aeroengine.) | | | ASSESSMENT TYPE | The final exam consist of two part: 1)Written and oral examination covering all material covered in course | | 2)assignments and individual project ## **FULL SYLLABUS** - 1) Types of Airbreathing Engines. Aircraft Propulsion Requirements. - 2)Elements of Thermodynamics for Aero Propulsion ; Ideal & Real Engine Cycle Analysis. Parametric Cycle Analysis. - 3) Subsonic & Supersonic Inlets. - 4) Turbomachiney: Axial Flow Compressors and Axial Flow Turbines. - 5) Combustors. - 6) Nozzles. - 7) Airbreathing Engine System Considerations. ## REFERENCE TEXT BOOKS - Aerothermodynamics of Gas Turbine and Rocket Propulsion Gordon C. Oates eISBN: 978-1-60086-134-5 print ISBN: 978-1-56347-241-1 DOI: 10.2514/4.861345 - Hill, P., and Peterson, C., Mechanics and Thermodynamics of Propulsion, Addison-Wesley Publishing Co., 1992, - Course notes