ELEMENTI DI OTTIMIZZAZIONE E STATISTICA

Insegnamento
ELEMENTI DI OTTIMIZZAZIONE E STATISTICA
Insegnamento in inglese
OPTIMIZATION ELEMENTS AND STATISTICS
Settore disciplinare
MAT/09
Corso di studi di riferimento
INGEGNERIA INDUSTRIALE
Tipo corso di studio
Laurea
Crediti
6.0
Ripartizione oraria
Ore Attività frontale: 54.0
Anno accademico
2020/2021
Anno di erogazione
2021/2022
Anno di corso
2
Lingua
ITALIANO
Percorso
PERCORSO COMUNE

Descrizione dell'insegnamento

Il programma dell'insegnamento è provvisorio e potrebbe subire delle modifiche

È necessario aver superato l’esame di "Analisi Matematica e Geometria I".

L'obiettivo del corso è impartire allo studente conoscenze di base sia operative che metodologiche inerenti la statistica e l’ottimizzazione nel contesto dell'ingegneria industriale. Lo studente sarà introdotto all'analisi dei dati, al ragionamento probabilistico e all'inferenza statistica, mostrando come l'uso di opportuni metodi statistici permetta di risolvere una varietà di problemi concreti a partire dall'analisi dei dati. I contenuti inerenti l’ottimizzazione saranno finalizzati a fornire i concetti sia di carattere modellistico che algoritmico inerenti i problemi decisionali strutturati che un ingegnere industriale tipicamente incontra nella fase di progettazione e/o gestione di un sistema.

Conoscenze e comprensione. Il corso intende impartire allo studente conoscenze di base sia operative che metodologiche inerenti la statistica e l'ottimizzazione nel contesto dell'ingegneria industriale. Gli studenti devono possedere una solida preparazione con conoscenze di base relative alle tecniche di analisi matematica e geometria, con riferimento al calcolo combinatorio ed al calcolo matriciale.

Capacità di applicare conoscenze e comprensione. Dopo il corso lo studente dovrebbe essere in grado di:

  • Programmare con rigore statistico un'indagine campionaria, analizzarne i risultati in chiave inferenziale e predisporre i relativi rapporti di sintesi.
  • Formulare un problema di decisione strutturato sotto forma di un modello matematico di ottimizzazione ed individuare l’algoritmo risolutivo più adatto per determinarne la soluzione ottima.

Autonomia di giudizio. Gli studenti devono possedere la capacità di elaborare insiemi di dati più o meno complessi, oltre che di modellare e risolvere problemi di ottimizzazione combinatoria. Il corso promuove l’autonomia di giudizio nella scelta appropriata della tecnica da utilizzare per analizzare i dati, interpretarli in maniera critica e per modellare e risolvere problemi di ottimizzazione.

Abilità comunicative. Gli studenti devono essere in grado di comunicare in modo chiaro con un pubblico eterogeneo, utilizzando gli strumenti metodologici acquisiti nell'ambito del corso, facendo uso della terminologia più appropriata.

Capacità di apprendimento. Gli studenti devono acquisire la capacità critica di rapportarsi alle problematiche tipiche dell'analisi statistica e dell'ottimizzazione. Devono essere in grado di rielaborare e di applicare autonomamente le conoscenze e i metodi appresi in vista di un’eventuale prosecuzione degli studi a livello superiore (laurea magistrale) o nella più ampia prospettiva di auto-aggiornamento culturale e professionale dell'apprendimento permanente.

Lezioni frontali ed esercitazioni.

L’esame consiste di una prova scritta (massima durata: 2 ore) composta di due parti: elementi di statistica ed elementi di ottimizzazione. Al fine del superamento dell'esame, si richiede obbligatoriamente il raggiungimento di 6/10 del punteggio su ognuna delle due parti in cui l'esame è suddiviso.

Elementi di Statistica. Istogrammi, media e deviazione standard. La distribuzione normale. Correlazione e regressione. Variabili aleatorie. Modelli di variabili aleatorie. Svolgimento di esercizi sugli argomenti trattati.

Elementi di ottimizzazione. Formulazione di modelli di ottimizzazione. Programmazione lineare: il metodo del gradiente ed il metodo del simplesso. Programmazione lineare intera: algoritmo di Branch & Bound. Svolgimento di esercizi sugli argomenti trattati.

  • F.S. Hillier e G.J. Lieberman, Ricerca Operativa, McGraw-Hill, 9/ed, 2010.
  • S.M. Ross, Probabilità e statistica per l’ingegneria e le scienze, Apogeo, 3/ed, 2015.
  • Appunti delle lezioni.

Semestre

Tipo esame
Non obbligatorio

Valutazione
Orale - Voto Finale

Orario dell'insegnamento
https://easyroom.unisalento.it/Orario

Scarica scheda insegnamento (Apre una nuova finestra)(Apre una nuova finestra)