

CORSO DI LAUREA LM56 –

CdLM Materials Engineering and Nanotechnology

SCHEDE INSEGNAMENTI DIDATTICA EROGATA a.a. 2020/2021

SCHEDA INSEGNAMENTO

Batteries and fuel cells

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND/21
Docente	Patrizia Bocchetta
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	I anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Basic knowledge of physics and chemistry
Contenuti	The course aims to provide the students with fundamental knowledge and
	understanding in electrochemical energy conversion and storage.
	Electrochemical, technological and metallurgical aspects of batteries and fuel
	cells devices are emphasized through theoretical lessons and
	numerical/experimental practice.
Obiettivi	Knowledge and understanding
formativi	The course provides the students with basic concepts of
	electrochemical processes applied to energy conversion and storage
	systems by focusing the attention on the performance, application,
	material science, and corrosion aspects of the batteries and fuel cell
	devices.
	Applying knowledge and understanding
	After the course, the student will acquire a basic knowledge of the
	principal topics of electrochemical charge storage and energy
	conversion. The student will learn theoretical and technological
	aspects of batteries, fuel cells and supercapacitor devices. The student
	will also understand metallurgical and environmental aspects of
	batteries and fuel cells finalized to prevent degradation and promote
	eco-friendly systems and recycle processes of wastes.
	Making judgments
	Students will acquire the ability to critically discuss the principal
	problems related to batteries and fuel cell and to propose solution to
	material choices, corrosion phenomena and stability issues by using
	Communication
	Utilillullication
	methodological tools acquired in the course with a veried and
	composite audience in a clear and technical way. The student will
	composite audience in a clear and technical way. The student will

	sustain conversations on electrochemical energy conversion themes by evidencing vantages and disadvantages if compared with other energy conversion methods. The ability to use a technical language will be improved during the laboratory practice, where the students will be called to propose solutions to the investigated systems. Learning skills The student will acquire basic concepts of applied electrochemistry that will guide him/her to a critical assessment of the positive and negative aspects of a novel energy storage or conversion system and to the project of possible solutions. These skills will be enhanced thanks to a long and focused laboratory practice.
Metodi didattici	The course consists of frontal lessons, numerical and experimental exercises. Class contents will be given manually on the board or presented with the aid of Power Point Slides. Interactions with students will be stimulated during lessons in order to keep high the attention and comprehension of the contents
Modalità d'esame	 Exams will be composed of an oral discussion of the theoretical part of the course (6 credits) and a written report on the experimental activity (3 credits). The oral discussion will relate on four topics: Energetic aspects of energy storage and conversion devices; Kinetic aspects of energy storage and conversion devices; Dicussion of a battery/fuel cell system; Enviromental and corrosion aspects of a battery/fuel cell system with the aim to verify to what extent the student has acquired the aptitude to manage electrochemical theoretical aspect of batteries/fuel cells systems and to apply them to the design and problem solving characteristic activities of these devices. The written report on the experimental activity will be evaluated by taking into account the level of the scientific discussion, the correctness of the technical language and the completeness/precision of the overall document.
Programma	Theoretical lessons (6 credits) Introduction to the course. Introduction to electrochemistry. Differences between chemical and electrochemical reactions. Energetic aspects of galvanic systems. Notes on electrolytic solutions. Transport phenomena in solution. Migration, diffusion, convection. Fundamental aspects of electrochemical kinetics in batteries: charge-transfer, diffusion and ohmic control. Charge-discharge curves. Faradaic and non Faradaic processes. Electrode/Electrolyte double layer. Helmolz e Gouy-Chapman Models. Electrochemical Impedance Spectroscopy: principles and applications to the characterization of energy storage and conversion devices. Bode and Nyquist diagrams. Circuital models. Electrochemical energy storage and conversion: introduction and electrochemical fundamental aspects.

	Present state of the art of energy storage and conversion devices for application in mobile (consumer electronics
	and biomedical devices), transport (hybrid and electric vehicles) and
	stationary (wind and photovoltaic systems).
	Ragone plot. Primary Batteries: conventional cells (Leclanche, manganese oxide/Zn, silver
	oxide/Zn, Zn/air), lithium batteries, reserve batteries, thermal batteries, sea
	batteries.
	Secondary Batteries: Pb-acid, nickel - cadmium, silver- zinc, Zn-air.
	Processes and materials for hydrogen production and storage.
	Fuel Cells: operating principle, general characteristic and classification.
	Advantages and disadvantages. Triple contact electrodes. Thermodynamic
	Polymeric Electrolyte Fuel Cells (PEFC). Materials and operation of catalyzed
	electrodes and polymeric electrolytes. Perfluorosulfonic membranes (Nafion)
	and proton transport mechanisms. Water management.
	Alkaline Fuel Cells. Phosphoric Acid Fuel Cells. Direct methanol fuel cells. Molten carbonate fuel cells. Solid oxide Fuel Cells
	Electrochemical capacitors and supercapacitors. Hybrid supercapacitors.
	Electrolytic supercapacitors.
	Corrosion in batteries and fuel cells: fundamentals of electrochemical
	Environmental impact of batteries and fuel cells.
	Numerical exercises on energetics and kinetics of galvanic systems, energy
	conversion and storage, corrosion phenomena applied to batteries and fuel cells.
	Laboratory Practice (3 credits)
	Fabrication and electrochemical study of conventional batteries (such as Daniell cell Zn-air) and fuel cells (PEMEC) focusing the attention on the
	Nernst equation and equilibrium potential measurements, battery technology
	and components, half-cell reactions, charging/discharging tests, and
	performance analysis. Motallurgical aspect of corrosion processos
	Electrochemical corrosion of materials typically used in battery and fuel cell
	systems.
	Microstructure analysis of samples affected by electrochemical corrosion.
	and different microstructures: microstructural analysis and mechanical
	performances.
Tosti di	Electrochomical Mothods, Eundamontals and Applications, A. I. Pard, I. P.
riferimento	Faulkner, Wiley (II edition), 2001
	Modern Electrochemistry 2B, 2nd edition J. O'M. Bockris e A.K.N. Reddy
	Kluwer Academic/Plenum Publishers NY (2000) Pietro Pedeferri, Corrosione e protezione dei materiali metallici. Vol. Le Vol.
	II, polipress, 2007, Milano Italia
	Papers and reviews provided during the course.
Altre	https://www.unisalento.it/scheda-utente/-

informazioni /people/patrizia.bocchetta/didattica utili

SCHEDA INSEGNAMENTO

Chemistry II

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	CHIM/07
Docente	Giuseppe Agostino Mele
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	I anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prereauisiti	Basic knowledge of chemistry and physics
Contenuti	The aim of this subject is to introduce students to the molecular-level
	understanding of the physicochemical properties of organic substances
	aimed at characteristics of materials and nanomaterials. The course will be
	tailored to master students with a specific background and interest in
	material sciences and technologies, industrial chemistry, chemical
	engineering. The overall aim of the course is to train the students in the basic
	concepts and technologies related to molecular materials possessing useful
	functional properties. Particular attentions will be devoted to responsive and
	adaptive materials and to the correlation between the (nano)structure of the
	molecular components and the functional properties of the hybrid materials.
Obiettivi	After completing this course, the student should be able to:
formativi	- Define what constitutes an organic compound. Apply the naming and
	drawing conventions to describe different classes of organic
	compounds.
	- Describe the range of molecular structures found among organic
	compounds.
	- Describe the physical structure of chemical isomers.
	- Manage general and organic chemistry issues in general.
	- Understand the principles and managing the results deriving by
	application of spectroscopic techniques mainly devoted to the
	characterization of organic materials.
Metodi	The course consists of frontal lessons by using slides and classroom
didattici	simulation of experiments. The frontal lessons are aimed at improving
	students' knowledge through the presentation of theories, models and
	methods.
	Part of the practice-oriented course will be focused on the application of

	spectroscopic techniques for analysis of organics and hybrid materials in general.
Modalità d'esame	In the final exam will be discussed the topics presented during the lectures as well as to provide a full structural interpretation of FT-IR, MS, 1H- and 13C-NMR spectra to elucidate the structures of an unknown compound.
Programma	Covalent bonds and shape of molecules (2 hours). Acids and bases (2 hours). Alkanes and Cycloalkanes (2 hours). Alkenes (2 hours). Alkenes: Reactivity (3 hours). Chirality (3 hours). Alkynes (2 hours). Alkynes (2 hours). Alkyl halides (3 hours). Alcohols, ethers and thiols (1 hour). Benzene and its derivatives (3 hours). Amines (1 hour). Aldehydes and ketones (2 hours). Carboxylic acids (3 hours). Functional derivatives of carboxylic acids (3 hours). Infrared spectroscopy (6 hours). Mass Spectrometry (6 hours). NMR Spectroscopy (10 hours). Tutorials (27 hours)
Testi di riferimento	McMurry J.E Fundamentals of Organic Chemistry Pavia, Donald L., Lampman, Gary M., Kriz, George S Introduction to spectroscopy William H. Brown, Thomas Poon, Introduction to Organic Chemistry, 6th Edition, Wiley
Altre informazioni utili	

SCHEDA INSEGNAMENTO

Electrochemical Technologies

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND/23
Docente	Claudio Mele
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	I anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Basic knowledge of calculus, physics and chemistry.	
Contenuti	The course is focused on the fundamentals of electrochemistry and its	
	technological applications, including corrosion, industrial electrochemical	
	processes and electrochemical energy conversion and storage systems.	
Obiettivi	Learning outcomes	
formativi	Knowledge and understanding	
	The aim of the course is to provide students with the fundamentals of	
	electrochemistry and its technological applications, including	
	corrosion, industrial electrochemical processes and electrochemical	
	energy conversion and storage systems.	
	Applying knowledge and understanding	
	After the course, the students should:	
	- have acquired the skills necessary to address the broad theme of	
	electrochemical technologies, discussing in particular the most	
	important variables, both from a thermodynamic and kinetic point of	
	view;	
	 have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface; 	
	- have acquired the basic tools for understanding the corrosion of	
	metallic materials in the different environments in which they can be used;	
	- be able to discuss the electrochemical processes applied to industrial	
	production;	
	 have understood the electrochemical devices for electrochemical 	
	energy conversion and storage systems.	
	Making judgements	
	The course provides the ability to critically address electrochemical,	
	corrosion and energy conversion and storage problems.	

Metodi	Communication The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts. Learning skills Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides. The course consists of frontal lessons using slides made available to students
didattici	and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.
Modalità d'esame	In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.
Programma	Course Content 1. Fundamentals of electrochemistry (6 hours) Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell. 2. The electrode-solution interface (6 hours) The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells. 3. Electrochemical thermodynamics (9 hours) Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation. 4. Electrochemical kinetics (9 hours) Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution. 5. Corrosion (9 hours) Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the
	Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.

٦

6. Industrial electrochemical processes (6 hours) Electrodeposition, electroforming, electrorefining. 7. Electrochemical energy conversion and storage systems (6 hours) Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors. 8. Techniques for the study of electrochemical interfaces (6 hours) Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems. Numerical exercises 9. Corrosion (6 hours) 10. Electrochemical energy conversion and storage systems (6 hours) Laboratory exercises 11. Electrochemical techniques (6 hours) Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry. 12. Spectroelectrochemical techniques (6 hours) Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry Testi di [1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry riferimento [2] V. S. Bagotsky - Fundamentals of Electrochemistry [3] A.J. Bard, L.R. Faulkner - Electrochemical Methods: Fundamentals and Applications [4] P. Pedeferri - Corrosione e protezione dei materiali metallici Office Hours: by appointment fixed by e-mail or at the end of the class Altre informazioni utili

SCHEDA INSEGNAMENTO

PHYSICS OF MATTER MOD. I C.I.

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	FIS/03
Docente	Eleonora ALFINITO
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	I anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Sufficiency in calculus, probability theory, linear algebra, electromagnetism
Contenuti	This is a course in theory and models in physics of matter; it aims to furnish
	some basic knolwedge concerning quantum physics of atoms, molecules and
	solids.
Obiettivi	Knowledge and understanding
formativi	The course provides a basis and an opportunity for originality in
	developing or applying ideas in a material physics research context .
	Applying knowledge and understanding:
	The course provides abilities in problem solving applied in new or unfamiliar environments
	within classical and quantum physics contexts .
	Making judgements:
	The course gives the ability to integrate knowledge and handle complexity, and
	formulate judgements with incomplete data to discriminate between
	the classical and quantum regime, to evaluate the appropriate set of
	approximations to be used.
	Communication
	Students have to be able to communicate their conclusions and rationale to specialist
	by using a technical language based on formulas and theorems, and
	non-specialist audiences by using a narrative language based on
	elementary concepts.
	Learning skills
	Students are trained to develop creative thinking, critical spirit, and
	autonomy, by using as a knowledge technique examples and counter-
	examples. The theoretical approach of the course is a good tool to
	improve their ability of abstraction

Metodi didattici	teacher-led discussion and assignments
Modalità d'esame	Physics of matter I is only the first modulus of the complete course named Physics of matter. There a single final exam which includes the contents of modulus I and modulus II The exam consists of two cascaded parts: the first part is written test (duration: two hours and a half); the student is asked to solve exercises ; it is aimed to verify to what extent the student has gained the ability to apply theory to solve simple case studies; the second part is an oral test aimed to determine to what extent the student has gained an overall knowledge of the main topics of the course.
Programma	Introduction: Physics and tecnology from the end of 1800 to today (3 hours).Mechanical and electromagnetic waves (2 hours).Special relativity (5 hours). Elements of probability and the Maxwell distribution (5 hours). The quantum nature of light (5 hours). Atomic models and the matter wave (5 hours). Quantum mechanics in one dimension (12 hours). The angular momentum (5 hours). The hydrogen atom, eigenvalues and eigenfunctions (3hours). Quantum statistics (2 hours). Multielectron atoms (2hours). Introduction to molecules (5 hours).
Testi di riferimento	 [1] R. Eisberg, R, Resnick, Quantum Physics, J. Wiley and Sons. [2] R.A. Serway, C. J. Moses, C. A. Mojer, Modern Physics, Saunders College [3] M. Born, Atomic Physics, Dover Books on Physics [4] <a< li=""> href="https://archive.org/search.php?query=creator%3A%22Ronald+Gautr eau+%26+William+Savin%22">R. Gautreau, W. Savin, Schaums Theory and Problema in Modern Physics </a<>
Altre informazioni utili	This is a course in theory and models in physics of matter; it aims to furnish some basic knolwedge concerning quantum physics of atoms, molecules and solids.

SCHEDA INSEGNAMENTO

PHYSICS OF MATTER MOD. II

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	FIS/03
Docente	Nicola LOVERGINE
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	I anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

.		
Prerequisiti	Knowledge and understanding of the concepts tought in PHYSICS OF	
	MATTER MOD. I (LM56)	
Contenuti	This is the Modulus II of the course named Physics of Matter . The Mod. II is a	
	graduate level introductory course to the fields of atomic molecular and	
	condensed matter physics. It aims to present the main properties of atoms	
	molecules and solids, along with their detailed theoretical	
	description/explanation based on the concepts of quantum mechanics and	
	solid state physics. In particular, the origin and properties of bonds in both	
	molecules and solids are presented, with emphasis - for solids - on metals and	
	metal properties. Special emphasis is placed thoughout this Course modulus	
	on the interaction of atoms and (crystalline) solids with electromagnetic	
	radiation (X-rays) and its use in the physical-chemical and structural	
	characterization of materials. The enotical concents introduced during the	
	characterization of materials. Theoretical concepts introduced during the	
	lectures are complemented by Laboratory classes dealing with practical	
	sessions on X-ray fluorescence and X-ray diffraction measurements on	
	crystalline materials.	
Obiettivi	After the Course the student will be able to describe major physical	
formativi	properties of atoms, molecules and solids using the principles and	
	laws of quantum mechanics. In particular, the student will be able to:	
	iuws of quantum meenames. In particular, the student win be usie to.	
	- Describe and understand electronic configurations of many-	
	electron stome, their energy levels and engular momentum states:	
	electron atoms, their energy levels and angular momentum states;	
	understand the origin and types of molecular bonds;	
	- Understand and utilize X-ray absorption and fluorescence	
	spectroscopy to identify chemical elements in a given material;	
	- Identify solids according to the type of bonds between atomic	
	constituents;	
	- Describe and understand the origin of the metals	

	electric/thermal properties and their consequences;
	- Describe and identify major crystal structures and the spatial
	- Understand the use of X-ray diffraction for the structural
	characterization of crystalline materials.
Metodi	The Course is carried on through classroom theoretical lectures (about 90%
didattici	of the total teaching hours) and practical Laboratory sessions (about 10% of
	the teaching hours) , the latter focussing on the applications of X-ray
	fluorescence for determining the materials chemical composition and the sue
	of X-ray diffraction measurements in the study of crystalline materials.
Modalità	Physics of Matter Mod. II is the second modulus of the Course named Physics
d'esame	of Matter . There a single final exam which includes the contents of Modulus I
	and Modulus II. The exam consists of two cascaded parts: the first part is a sumittee test (duration, two hours and a half), the student is called to call
	evercises: it is aimed to verify to what extent the student has gained the
	ability to apply quantum theory to solve simple case studies: the second part
	is an oral examination/colloquium aimed at determining to what extent the
	student has gained an overall knowledge of the topics treated within the
	course.
Programma	Many-electron atoms, X-ray absorption and fluorescence of atoms,
	Laboratory I (XRF and microanalysis for analysis of materials chemical
	compostion), Bonds in molecules, Introduction to Condensed Matter Physics,
	Chemical bonds in solids, Classical description of electric conduction in
	metals, Electrons contribution to thermal and thermo-electric properties of
	metals, Quantum theory of electrons in metals, Elements of crystallography,
	A-ray uniffaction of crystals, Experimental methods of A-ray uniffaction on crystals.
Testi di	1 Fundamental University Physics Vol 3 Quantum and Statistical Physics
riferimento	(M. Alonso, E.I. Finn). Addison Wesley (1968).
	2. Solid State Physics (N.W. Ashcroft N.D. Mermin), Holt-Saunders
	International Editions (1976).
	3. Introduction to Solid State Physics (C. Kittel), Thomson Press (2003).
Altre	
informazioni	
utili	

SCHEDA INSEGNAMENTO

Science, Technology and Sustainability of Polymers

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND 22
Docente	Mariaenrica Frigione
Crediti Formativi Universitari	12
Ore di attività frontale	108
Ore di studio individuale	192
Anno di corso	I anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Knowledge of disciplines belonging to a Bachelor Degree in Industrial
	Engineering or Materials Science are required to the Students: Chemistry,
	Physics and Science and Technology of Materials.
Contenuti	The course aims at providing students a comprehensive knowledge of Science
	and Technology of (natural or synthetic) polymers: from their synthesis, to
	their processing procedures and techniques, their macroscopic and
	microscopic properties and characteristics in both solid and liquid states,
	their durability, degradation/biodegradation in different environmental
	conditions, LCA (Lyfe Cycle Assessment) techniques applied to polymeric
	materials and their final disposal. Specific examples of natural (i.e. wood, bio-
	based polymers) and technologically advanced polymers, or classes of
	polymers, will be illustrated. Issues related to sustainability of polymers and
	the impact of waste plastic on the (ground/marine) environment will be
	discussed, presenting case studies of innovative researches aimed at
	studying, preventing/limiting the pollution due to waste plastics or of
	polymers employed to aid the environment. Part of the course will be devoted
	to the characterization methods and techniques for polymers, with related
	laboratory experiences.
Obiettivi	Knowledge and understanding. Students must have a solid
formativi	background with a broad spectrum of basic knowledge related to
	science, technology and sustainability of (natural or synthetic)
	polymers:
	 the students must have the basic cognitive tools to think
	analytically, critically and to correlate information's needed to analyze,
	characterize, process, select a polymeric material, identify for it an
	appropriate recycling route;
	 they must have solid knowledge of science, technology and
	sustainability of (natural or synthetic) polymers;

• they must be able to find and manage any information required on a specific (natural or synthetic) polymer, or a blend of polymers, on
Applying knowledge and understanding. After the course the student
should be able to:
1) Recognize the main differences, characteristics and features of the three classes of polymers, i.e. thermosetting, thermoplastic and
elastomers.
2) Select the appropriate technique and processing conditions for a
specific (natural or synthetic) polymer, or a blend of polymers.
3) Identify the relationship between chemical-physical,
microstructural characteristics and macroscopic properties of
different polymers (including bio-based ones) belonging to the three classes of polymers
4) Select a proper polymeric material or a blend of polymers for a
specific application.
5) Select the proper range of service temperature for a polymer, or a
blend of polymers.
6) Identify the proper methods and techniques required to
characterize a specific polymer, or a blend of polymers, in relation to
the specific final use.
7) Analyze the results of an experimental test aimed at characterizing
a specific property of a (natural or synthetic) polymer/blend of
polymers.
8) Distinguish between the degradation and biodegradation processes,
(a) Propose a method /technique for the recycle of waste polymers in
order to prevent them to be landfilled
Making judgments. Students are guided to learn critically everything
that is explained to them in class, to select the more appropriate
solution (of a polymer/blend of polymers, or of a method/technique to
characterize, process or recycle procedure) for any specific
application/requisite and to analytically justify any choice in
comparison with available alternatives, taking into account also the
eco-sustainability concepts involved in the different choices.
Communication. The students must be able to communicate with a
varied and composite audience, not culturally homogeneous, in a clear,
logical and effective way and with the appropriate terms, using the
methodological tools acquired and their scientific knowledge. The
course promotes the development of the following skills of the
student: ability to expose with the appropriate specialist vocabulary
any topic related to science, technology and sustainability of polymers;
ability to describe and analyze the proper solution for any specific
application/requisite, ability to inustrate the results of all experimental test performed on a polymeric material ability to
discuss on issues related to their disposal with environmental
implications.
Learning skills. Students must acquire the critical ability to relate, with
originality and autonomy, to the typical problems of science, technology and

	sustainability of polymers, and in general, cultural issues related to other similar areas. They should be able to develop and apply independently the knowledge and methods learnt with a view to possible continuation of studies at higher (doctoral) level or in the broader perspective of cultural and professional self-improvement of lifelong learning. Therefore, students should be able to switch to exhibition forms other than the source texts in order to memorize, summarize for themselves and for others, and disseminate scientific knowledge.
Metodi	The course consists of theory lessons, seminars, laboratory experiences,
didattici	exercitations, visits to industrial plants and/or research laboratories. The theory lessons, carried out by using slides of other didactic material made available to students, always the day before (at least) of the lesson, are aimed at improving their knowledge and understanding through the illustration of definitions, assumptions, models and methods; students are invited take part to the lesson with autonomy of judgment, by asking questions and presenting examples. The seminars are aimed at giving an insight on some selected (updated every year) topics on science and technology of polymers and on issues related to sustainability and environmental impact of waste plastics. The laboratory experiences are aimed at illustrating the main characterize polymeric materials. The exercitations in classroom are aimed at illustrating how to analyze, report in a graph/table and critically discuss the results of an experimental test performed on a polymeric material. Visits to industrial plants and/or research laboratories are aimed at illustrating the on field application of wast the students learn during lessons.
Modalità	Final (oral) exam
d'esame	The student is asked to describe for a specific (natural or synthetic) polymer, or a blend of polymers, one or more of the following: synthesis, appropriate processing techniques, main properties and characteristics, characterization measurements and techniques and discussion of relative results, durability feature, biodegradation paths, LCA and environmental impact, recycling alternative methodologies. The student is also asked to supply alternatives for a polymeric material, for a characterization technique or for a technological method taking into account a specific goal (application, characterization, recycling). In the evaluation of the exam, the following elements will be taken into consideration: the logical route followed by the student in solving the proposed issue; the correctness of the procedure used to address the question and provide a solution; the adequacy of the proposed solution in relation to the competencies that the student is supposed to have acquired; the capacity to make connections among the different topics covered in the course; the use of an appropriate technical language.
Programma	Theory Lessons: 1) Polymer's Chemistry. Molecular Structure of polymers. Polymeric solutions: rules for polymer solubility in solvents. Molecular weight and measurements. Gel Permeation Chromatography. Polymerization reactions. Step-growth polymerization. Chain polymerization.
	2) Polymer's physics. Classification of polymers with examples. Glassy state of

	polymers. Characteristic temperatures for polymers. Glass transition
	2) The sum of the state of polymers.
	3) Thermal characterization of polymers. Instruments and techniques for
	(1) Development of polymers. Properties measured with thermal analysis.
	4) Rheology and rheological analysis for polymer characterization.
	Classification of fluids on the basis of their rheological properties. Viscosity
	measurements and relative instruments. Rheological instruments employed
	for characterization of polymers.
	5) Mechanical Properties of polymers. Standard tests and instruments for the
	characterization of the mechanical properties of polymers. Dynamic-
	mechanical properties.
	6) Processing of polymers. Main industrial techniques and instruments for
	the processing of polymers. Characteristics of final products.
	7) Durability and environmental aging of polymers. Chemical Aging. Physical
	Aging. Weathering. Natural and accelerated aging. Case studies.
	8) Degradation and Biodegradation processes: conditions and environments,
	mechanisms. Biodegradable polymers.
	9) Natural polymer (composite): Wood. Definitions, characteristics and
	properties of composite and nanocomposite materials. Wood structure at
	different levels of magnitude. Influence of water/moisture content on wood
	properties. Mechanical properties of wood: standard tests, specimens,
	instruments and results. Durability of wood.
	10) Circular economy concepts applied to polymers. Bio-based polymers and
	bio-composites: production, properties, applications. Case studies.
	11) LCA (Lyfe Cycle Assessment) techniques applied to polymeric materials.
	Issues related to sustainability of polymers, impact of waste plastic on the
	(ground/marine) environment. Lase studies.
	12) Recycling methodologies for polymers. Advantages and technological
	limits for each recycling method. Case studies for recycling of thermoplastic,
	thermosetting and elastomeric polymers.
	13) Case studies of polymers employed to ald the environment.
	Laboratory Experiences: Thermal, Mechanical characterization of polymers.
	Scanning Electric Microscopy (SEM) to analyze Polymers and Wood.
	Exercitations: analysis and discussion of the results from (thermal,
	mechanical) tests performed on different polymers.
	Seminars neid by experts.
Testi di	Visits to industrial plants and/or research laboratories (when possible).
riferimente	L.H. Spering, introduction to Physical Polymer Science, John Wiley, 2006.
riterimento	F.W. Billmeyer, Textbook of Polymer Science, John Whey & Sons Inc., 1984.
	S. Druckner, G. Allegra, M. Pegoraro, F. La Manua, Scienza e rechologia del Matariali Dalimariai" Ediana, 2007
	Material Polimerici , Edises, 2007.
	U.W. Geude, Polymer Physics, Chapman & Hall, 1996.
	A W Dirlow P. Hawarth I. Patcholon 'Division of Diastica' Hangar Dublishers
	A.W. DITTEY, D. HAWORUI, J. DAUTIETOR, PHYSICS OF PLASTICS, HARSER PUBLISHERS,
	1774. I Mark K Ngai W Craagalay I Mandallyann E Samulahi I Vaaria C
	J. Mark, K. Ngal, W. Glaessley, L. Malluelkerll, E. Salluiski, J. Koellig, G. Wignall "Drysical Droportion of Dolymore" Combridge University Press
	Vignan, rhysical rioperties of rolymers, cambridge university rress.
Altro	Drof Evigiono receives students unon appointment Contact her at the set of the
AILTE	FIOL FIIGHT FOR THE FOR THE SUCCESS FOR THE PARTY IS A SUCCESS FOR THE FOR THE FOR THE FOR THE FOR THE FOR THE

informazioni
utilieach lesson or by e-mail: mariaenrica.frigione@unisalento.it.The students can apply for the exam on Web-VOL system.

SCHEDA INSEGNAMENTO

Transport phenomena II

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND 24
Docente	Carola Esposito Corcione
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	I anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Sufficiency in calculus, linear algebra
Contenuti	The course is focused on the study of the transport phenomena occurring in fluid/solid materials: mass, heat and momentum transfer. These phenomena greatly regulate and control all the processes (transformation, production, manufacture, etc.) involving materials in their whole life cycle. The course will illustrate the use of: balances (of mass, energy and momentum), both in microscopic anche macroscopic scales in turbulent flow; transport coefficients (friction, heat and mass) between different phases; empirical correlations for turbulent flow. Several case studies will be presented in the course, in order to illustrate the practical use of the mathematical equations introduced in the lessons.
Obiettivi formativi	Knowledge and understanding The course is focused on the study of the These phenomena greatly regulate and control all the processes (transformation, production, manufacture, etc.) involving materials in their whole life cycle. The course will illustrate the use of: balances (of mass, energy and momentum), both in microscopic and macroscopic scales in turbulent flow; transport coefficients (friction, heat and mass) between different phases; empirical correlations for turbulent flow. Several case studies will be presented in the course, in order to illustrate the practical use of the mathematical equations introduced in the lessons. Applying knowledge and understanding: The course provides abilities in transport phenomena problem solving applied in materials engineering field. Making judgements: The course gives the ability to integrate knowledge and handle complexity, and to solve transport phenomena problems occurring in fluid/solid materials: mass, heat and momentum transfer.

	Communication
	Students have to be able to communicate their conclusions and
	rationale to specialist
	by using a technical language based on formulas and theorems, and
	non-specialist audiences by using a parrative language based on
	alamentary concents
	Learning skills
	Students are trained to develop creative thinking, critical spirit, and
	autonomy , by using as a knowledge technique examples and counter-
	examples. The theoretical approach of the course is a good tool to improve
	their ability of abstraction
Metodi	Theoretical and practice lessons
didattici	
Madalità	written even
Modalita	written exam
d'esame	
Programma	Theoretical lessons :
	Moment Transfer in laminar and turbolent flow.
	Dimensional analysis of the conservation equations. Dimensionless groups :
	definitions and physical meant. Case study : flow past immersed sphere.
	Distribution of velocity in turbulent flow. Mediated expressions for the
	moment conservation equations.
	Heat Transfer in laminar and turbolent flow.
	Case studies : heat conduction in a cooling wing natural heat convection
	Dimensional analysis of the concernation equations. Dimensionless groups
	definitions and physical meant
	definitions and physical meant.
	Distribution of temperature in turbulent flow. Mediated expressions for the
	heat conservation equations.
	Dimensional analysis technique.
	Transport coefficient for isothermal systems.
	Coefficient for moment transfer : friction factor. Transport in pipes and past
	immersed objects. Correlations between dimensionless groups of the
	moment transport.
	Transport coefficient for non isothermal systems.
	Heat transfer coefficient. Transport in pipes and past immersed objects
	Dimonsionloss groups for natural and forced heat convection Correlations
	between dimensionless groups of the best transport
	The man and the state of the second s
	l ransport coefficient for multi- components systems.
	Mass transfer coefficient. Transport in pipes and past immersed objects.
	Dimensionless groups for natural and forced mass convection. Correlations
	between dimensionless groups of the mass transport.
	Macroscopic balances
	Macroscopic balances for isothermal and non isothermal systems with one
	ore more components. Mass macroscopic and moment balance. Macroscopic
	balance of energy and mechanic energy (Bernoulli equation).
	Practice:
	Transport problems in steady and non steady state
	Solution of balance and transport equations for problems in stoady and
	isothermal state with one or more comparents
	isothermal state with one or more components.

	Solution of the conservation equations for the non steady state. Solution of the transport problems for isothermal and non isothermal	
	systems with one or more components.	
	Solution of steady and non steady state problems, using macroscopic balance	
	for Macroscopic balances	
Testi di	R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport phenomena, Casa Editrice	
riferimento	Ambrosiana.	
	L. Theodore, transport phenomena for engineers, International Textbook	
	Company, U.S.	
	A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus, L.B. Andersen, I principi delle	
	operazioni unitarie, Editrice Ambrosiona, Milano.	
Altre		
informazioni		
utili		

SCHEDA INSEGNAMENTO

Ceramics materials

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	Ing-Ind/22
Docente	Antonio Licciulli
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	II anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Students are requested to revive chemistry, physics, materials fundamentals, electromagnetism
Contenuti	The course provides a thorough understanding of ceramic and glassy materials. The student will be able to assess whether, when and how to suggest the use of ceramic materials in different application contexts. The criteria for the engineering design and affidabilistic approach on ceramic materials will be disclosed.
Obiettivi formativi	The course should enable the students to: * Identify the role of ceramic materials in technological devices and in everyday life. * Identify the functional and structural properties of ceramic materials and learn how to recognize their properties starting from sensory perceptions ending up to analytical testing. * Quantify the engineering performance of ceramics: strength, stiffness, toughness, transparency, opacity, refractoriness, thermal and electrical conductivity and certify their suitability for specific uses. * Acquire a working method for the identification of the material and combination of materials capable of offering the best engineering solution
Metodi didattici	The course includes plane lecturing on scheduled program plus laboratory experience, ceramic forming and sintering design by rapid prototyping, sol- gel slip casting Attention will be given to applications and markets: ceramics for aerospace, electronics, medicine, energy, glass technology Guided tours in research laboratories and companies are a part of teaching method An introduction on resources resource scouting will be give: Databases,

	internet, fairs, books, magazines, exhibitions
	Meet experts in seminars
Modalità	The student is evaluated by the commitment and interest with which he
d'esame	follows the theoretical lectures and laboratory experiences. The student at
	the end of the course will prepare a monograph or a report on experiences of
	laboratory. A final oral examination will give the final vote.
Programma	Traditional ceramics, glasses, advanced ceramics: taxonomy and classes. Description of the microstructure of the main ceramics: wurtzite, zin blende, cesium chloride, corundum, fluorite perovskite, garnet, graphite, diamond, amorphous carbon and carbon fibers. Silicates: tectosilicates and feldspars, phyllosilicates, zeolites clays and their properties: intercalation and chemical reactivity and their properties. Ceramics and porcelain from silicates: the ternary phase diagram. Density, microporosity mesoporosity and macroporosity, evaluation and applications. Mechanical properties of ceramics, theoretical strength, Griffith model of fracture for brittle materials, toughening mechanisms in monolithic and ceramic composites. Weibull probabilistic approach to the mechanical
	ceramic composites. Weibuli probabilistic approach to the mechanical performace of ceramics. Electrical and magnetic properties of ceramic: dielectric constant, contributions to the polarizability, electrical conductivity in ceramic conductors and semiconductors. Solid state gas sensors, fuel cells, piezoceramics, ferroelectric and ferromagnetic ceramics. Sintering: definition, types and stages of sintering. Solid state sintering: densification from diffusion transport from grain boundaries, lattice, surface diffusion and vapor. Viscous sintering and Frenkel model. The sintering diagram. Ceramic powders: Bayer process for the preparation of alumina, and Atchenson process for the preparation of silicon carbide. Methods for sieving, sizing calcining ceramic powders. Properties of ceramic suspensions: zeta potential, viscosity, flocculation deflocculation. Forming of ceramic by wet and dry methods: slip casting, uniaxial and isostatic pressing, injection moulding. Rapid prototyping techniques:
	selective laser sintering, laminated object manufacturing, laser stereolithography. Ceramic matrix composites: ceramic fibres and classification of reinforcements and preforms. The role of fiber-matrix interface. Materials in the glassy state: models and prediction of amorphous solid formation. The furnaces for glass melting and raw materials selection. Production of glass fibers and cables. Glass processing techniques: etching, fusing, blowing, pressing, drawing. Flat glass: production processes, thermal and chemical tempering and surface hardening. Safety glass, tempered glass. Special glasses: low-emissivity, solar glass, anti-reflective, fireproof glasses. Color: Definition absorption phenomena, emission, reflection and luminescence. The color in the ceramic and in the glasses, vibrational model in ionic solids, the transition metals, the rare earths. Applications and markets for structural ceramics, electroceramics, coatings, bioceramics, ceramics for energy, membranes, ceramic filters, ceramics for aerospace, telecommunications materials.

	Bioceramics and biological tissue response: definitions and classifications. The biogenic materials, and the "ceramic" materials of natural origin. Implants, prosthesys, scaffolds, films the range of ceramic biotechnological solutions.
Testi di	Fundamentals of Ceramics, Michel Barsoum, M.W Barsoum, 2002 CRC Press
riferimento	Modern Ceramic Engineering,
	D. W. Richerson, M. Dekker inc., 1990
	Mechanical properties of ceramics, J. Wachtman et al, Wiley e Sons 2009
	Introduction to the principles of ceramic processing, J.S. Reed J. Wiley e Sons
	1988
	Electroceramics, A.J. Moulson, J.M. Herbert, Chapman and Hall 1990
Altre	
informazioni	
utili	

SCHEDA INSEGNAMENTO

COMPOSITE AND NANOCOMPOSITE MATERIALS

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND/22
Docente	Antonio greco
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	II anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	knowledge of solid mechanics and materials science and technology
Contenuti	This course is aimed at providing the basics of composites and
	nanocomposites materials in view of their application in different
	engineering fields, using a strong interdisciplinary approach. Competences on
	polymer matrices and reinforcements, mechanics of anisotropic materials,
	fabrication technologies of thermoplastic and thermosetting matrix
	composites are provided.
Obiettivi	Knowledge and understanding:
formativi	The course provides the basis of knowledge to understand and solve
	complex new problems in design and processing of composite
	materials accounting for anisotropy and reactive processing
	Applying knowledge and understanding
	The student will be able to apply the basic knowledge on mechanics of
	anisotropic materials to the design of simple structural elements. A
	multidisciplinary approach is presented accounting for chemical,
	materials and mechanical engineering aspects.
	Making judgements
	Simplification and synthesis of complex problems is presented in
	order to promote the judgement and evaluation capabilities of the
	students
	Communication
	The course promotes the development of the following skills of the
	student: ability to expose in precise and formal terms an abstract
	model of concrete problems, identifying the salient characteristics of
	them and discarding the inessential characteristics; ability to describe
	and analyze an efficient solution for the problem under consideration.
	A seminar on composite properties is assigned to students
	Learning skills

	Autonomous learning is promoted thanks to the use of: different books and
	slides, numerical methods, homework exercise to be solved in groups of two.
Metodi	The course is made up of frontal lessons for about 45 hours, and about 10
didattici	hours practice with a software implementing micro and macromechanic of
	composite materials. 10 more hours of laboratory are foreseen, in order to
	highlight the relevance of anisotropy in mechanical testing, and provide a
	practical demonstration of the main technologies for composite processing
Modalità	Oral exam after a seminar on composite properties and a homework.
d'esame	
Programma	Introduction:
0	matrix and reinforcements. Reinforcement materials: Physical, chemical,
	mechanical properties of carbon, glass, aramide, basalt, polymeric and
	natural fibers. Surface treatment of fibers for improved adhesion
	Sandwich structures:
	Core materials: foams and honeycombs. Mechanical properties of sandwich
	structures.
	Micromechanics
	Fiber-matrix interface. Characterization of fiber-matrix adhesion. Calculation
	of the elastic and ultimate properties of unidirectional laminae from the
	properties of matrix and fibers
	Macromechanics
	Elastic properties of a lamina of arbitrary orientation. Failure criteria
	Macromechanical behavior of a laminate
	Lamination theory. Special cases of laminate stiffness. Mechanical behaviour
	of anisotropic laminates (Helius Composite Design)
	Nanocomposites
	Nanofillers, geometries and materials. Preparation of nanocomposites.
	Characterization of nanocomposites: improvement of properties and
	analytical prediction of properties.
Testi di	P.K. Mallick, "Fiber reinforced composites'", Marcel Dekker
riferimento	R.M. Jones, "Mechanics of composite materials", McGraw Hill
	Didactic aids (lecture slides) provided by the teacher
Altre	
informazioni	
utili	

SCHEDA INSEGNAMENTO

HEAT AND MASS TRANSFER PHENOMENA IN COMPOSITES AND POLYMERS

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	Ing-Ind/24
Docente	Alfonso Maffezzoli
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	II anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Knowledge of transport phenomena and polymer physics and chemistry.
Contenuti	This course is aimed to apply the basic knowledge of transport phenomena to
	the mathematical modeling of processing of composite materials.
	Competences on thermosetting polymer matrices, their reactivity and the
	kinetics of curing are also provided. Basic elements of finite element (FE)
	numerical solution of heat balance equations is provided. The optimization of
	composite processing is performed adopting a FE tool. In the last part of the
	course sorption and mass diffusion in polymrs is analyzed as an application of
	the basic knowledge of transport phenomena
Obiettivi	Knowledge and understanding:
formativi	The course provides the basis of knowledge to understand and solve
	complex new problems in materials processing and in mass and heat
	diffusion, applying ideas often in a research context
	Applying knowledge and understanding
	The student will be able to solve heat and mass balances, applied to
	materials processing, using approximate solution or numerical
	methods. A multidisciplinary approach is presented accounting for
	chemical, materials and mechanical engineering aspects.
	Making judgements
	Dimensionless and approximate methods are presented in order to
	promote the judgement and evaluation capabilities of the students
	Communication
	The course promotes the development of the following skills of the
	student: ability to expose in precise and formal terms an abstract
	model of concrete problems, identifying the salient characteristics of
	them and discarding the inessential characteristics; ability to describe
	and analyze an efficient solution for the problem under consideration.

	Learning skills	
	Autonomous learning is promoted thanks to the use of: different books and	
	slides, numerical methods, homework exercise to be solved in groups of two	
Metodi	Lessons, practice with a Finite Element program for the solution of	
didattici	differential equations, visit to an industrial plant. Self evaluation tests with	
	Kahoots after every topic	
Modalità	Interview after a homework . A homework regarding modeling topics, and an	
d'esame	associated finite element solution of the related differential equations, is	
	assigned to students. During the exams the homework is discussed and if the	
	results are satisfactory an interview is started with questions regarding the	
	main topics of the course	
Programma	Introduction, thermosetting composite matrices (12 hours).	
	Basic principles of the processing of thermosetting matrix composites:	
	autoclave lamination as case study (20 hours).	
	Process modeling through numerical solution of differential equations (10	
	hours).	
	Modeling approach to filament winding, pulrusion, RTM and other processes	
	(16 hours).	
	Processing of thermoplastic composites (8 hours).	
	Visit to industrial plants (3 hours).	
	Mass transport in polymers: technological and modeling issues (12 hours).	
	Industrial plant visits are programmed. A full day to the Journée européenne	
	de composites (JEC) in Paris (France), the most relevant world fair on	
	materials and processes for composites, is organized if adequate financial	
	support is provided by University to students.	
Testi di	Slides in *.ppt format available at https://formazioneonline.unisalento.it/	
riferimento	Crank "Mathematics of diffusion"	
	D. S. Burnett "Finite Element Analysis: From Concepts to Applications"	
	P.K. Mallick "Fiber-Reinforced Composites: Materials, Manufacturing, and	
	Design"	
Altre	Write an email to the teacher (alfonso.maffezzoli@unisalento.it) for an	
informazioni	appointment or questions	
utili	The link to participate to on-line interviews is:	
	https://teams.microsoft.com/l/team/19%3aacd7a95cfc284755a9abd13166	
	db8c77%40thread.tacv2/conversations?grou	

SCHEDA INSEGNAMENTO

Non Ferrous metallurgy

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING/IND 21
Docente	Paola Leo
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	II anno
Semestre	Ι
Lingua di erogazione	Inglese
Percorso	PERCORSO COMUNE

Prerequisiti	Metallurgia di base
Contenuti	
	Il corso sviluppa contenuti relativi alla microstruttura, proprietà meccaniche,
	processo, metallurgia fisica e applicazioni ingegneristiche delle leghe non
	ferrose. Particolare attenzione è dedicata alle relazioni microstruttura /
	proprietà, processo/ proprietà e al ruolo dei trattamenti termici
	sull'evoluzione della microstruttura.
Obiettivi	Dopo il corso lo studente dovrebbe essere in grado di:
formativi	1) Identificare le proprietà, le applicazioni e i limiti delle principali
	leghe non ferrose;
	2) Riconoscere le principali caratteristiche microstrutturali e
	meccaniche indotte da processi di fusione, deformazione plastica e
	metodi di giunzione;
	3) Identificare il ruolo dei parametri di processo (saldatura, fusione,
	deformazione plastica, stampa 3D) sull'evoluzione e le proprietà
	microstrutturali;
	4) Applicare metodi di rafforzamento e trattamenti termici;
	5) Riconoscere il ruolo dei cicli termici di processo sull'evoluzione
	della microstruttura.
	6) Orientarsi nella scelta progettuale delle più utilizzate leghe non
	ferrose per applicazioni a bassa e alta temperatura.
NG 1 11	
Metodi	Lezioni Frontali, Laboratorio, Progetti Individuali, Analisi di casi di studio
aldattici	
Modalità	Parte scritta su argomenti teorici
d'esame	Parte orale sulla parte progettuale
Programma	Lezioni Frontali:
	1) Introduzione sulle leghe non ferrose in termini di principali caratteristiche

microstrutturali, proprietà, applicazioni, processo (1h)
2) Richiami sulla cristallografia, difetti, meccanismi di rafforzamento (3 ore)
3) Metallografia e tecniche sperimentali (3 ore):
a) Preparazione del campione per la microscopia ottica
b) microscopio ottico
c) Test di durezza
4) Metallurgia fisica:
a) Principi di solidificazione: microstruttura, trattamenti termici, difetti (8
ore).
b) Deformazione plastica, evoluzione microstrutturale e trasformazioni di
fase allo stato solido: Recupero e ricristallizzazione statici e dinamici (3 ore).
c) Indurimento per precipitazione (6 ore).
d) Evoluzione microstrutturale indotta da cicli termici di processo (3 ore)
Casi di studio sugli argomenti precedenti.
5) Leghe di alluminio (4 ore)
Leghe di alluminio da deformazione plastica: microstrutture e trattamenti
termici, designazione di leghe e dei trattamenti termici, rafforzamento per
incrudimento, leghe non trattabili termicamente, leghe trattabili
termicamente, giunzioni. Applicazioni.
Casi di studio su argomenti di cui sopra
Leghe di alluminio da getto: microstrutture e trattamenti termici,
designazione di leghe e trattamenti termici, leghe basate sul sistema
alluminio-silicio, leghe basate sul sistema alluminio-rame, leghe alluminio-
magnesio, leghe alluminio-zinco-magnesio. Applicazioni.
Casi di studio sugli argomenti precedenti.
6) Leghe di magnesio (2 ore)
Microstrutture e trattamenti termici, designazione delle leghe e dei
trattamenti termici, leghe con e senza zirconio.
Casi di studio sugli argomenti precedenti.
/ J Legne di titanio (4 ore)
Leghe alfa: microstruttura e proprieta
Legne Alpha / Beta: microstruttura e proprieta
Legne Beta: microstruttura e proprieta
Applicazioni.
Casi di studio su argomenti di cui sopra.
o) Processi innovativi per legne non terrose, evoluzione e proprieta dena
Nueve tecniche di giunzione: microstruttura e proprietà
Nuove tecniche di giunzione. microstruttura e proprieta
Additive manufacturing: microstruttura e proprietà
Casi di studio sugli argomenti di cui sopra
(a) La lagha non farrasa in campa Biomadica (3)
Jaboratorio:
1) Lappatura lucidatura attacco chimico attacco elettrolitico analisi in
microsconica ottica test di durazza e test di trazione applicati alla
caratterizzazione microstrutturale e meccanica delle seguenti leghe leggere
$2024\ 7075\ 6061\ A357\ C355\ Ti-6Al -4V\ WE43\ A791\ (4\ ore)$
2) Caratterizzazione della microstruttura di getti e saldature di leghe non

	ferrose trattabili termicamente e non: microstruttura, difetti, proprietà
	meccaniche (2 ore)
	3) Trattamento termico di solubilizzazione e invecchiamento applicato a
	leghe di alluminio e magnesio: curve di invecchiamento a diverse
	temperature di mantenimento con o senza precedente trattamento termico
	della soluzione (2 ore)
	4) Microstruttura da deformazione plastica e trattamento di recupero e
	ricristallizzazione applicati alle leghe di alluminio: evoluzione della
	microstruttura e proprietà meccaniche (2 ore)
	5) Trattamenti termici di omogeneizzazione (2 ore): evoluzione della
	microstruttura e proprietà meccaniche
	6) Trattamenti termici della lega Ti-6Al-4V (2 ore)
	Evoluzione di microstruttura e durezza della lega in seguito a permanenza in
	temperatura (in campo alfa, alfa +beta, beta) e raffreddamenti a velocità
	crescenti.
	Progetto individuale:
	Nuove tecniche di giunzione / rivestimento / stampa 3D applicate a leghe non
	ferrose: caratterizzazione microstrutturale e meccanica dei campioni (6-8
	ore)
Testi di	[1] American Society for Metals, Metals Handbook, V. 15, Casting, Metals Park,
riferimento	Uhio, 1988.
	[2] J.D. Verhoeven, Fundamentals of Physical Metallurgy, Wiley
	[3] R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering
	Materials, Wiley
	[4] M.Tisza, Physical Metallurgy for Engineers, ASM,
	[5] G.E Dieter, Mechanical Metallurgy, McGraw-Hill
	[6] I.J.Polmear, Light Alloys, BH
	[7] W.F.Smith, Structure and Properties of Engineering Alloys,McGraw-Hill
	[7] G. Lutjering, J. C. Williams, 'Titanium', Springer 2nd edition, New York
	[8] R.W. Messler, Principles of welding, J.Wiley & Son
Altre	
informazioni	
utili	

SCHEDA INSEGNAMENTO

NANOTECHNOLOGIES FOR ELECTRONICS

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-INF/01
Docente	Massimo DE VITTORIO
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	II anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	MATERIALS FOR ELECTRONIC APPLICATIONS

Prerequisiti	Background on solid state physics and semiconductor devices is	
	recommended but not mandatory	
Contenuti	The course deals with the most advanced technologies at the nanometer and micrometer scale for the fabrication and characterization of electronic, photonic and micro- and nano-electromechanical MEMS/NEMS systems and devices. It describes how micro and nanotechnologies impact different fields and applications such as Information and Communication Technologies (ICT), Energy, Lifescience and Medicine and it shows how the most advanced devices, often employed in our portable and home electronics, such as nanoscale transistors, smart sensors and microelectromechanical systems, are fabricated and tested. During the course several visits to the nanotechnology laboratory of the Center for Biomolecular Nanotechnologies of the Istituto Italiano di Tecnologia, with demonstrations of the available state of the art equipment for front-end (material and device fabrication) and back-end (device packaging, characterization, test) tools, will be done. The course also includes a training on multiphysics finite element method softwares for electronic, photonic and MEMS device design and simulation.	
Obiottivi	Knowledge and understanding. Students must have a background in	
	Kilowicuge allu ulluei staliullig. Students illust have a Dackgi oullu ill	
formativi	semiconductor crystals and devices and basic background in material	
	science:	
	 the students must have the basic cognitive tools to understand semiconductor crystals and their technology; they must have knowledge of the electromagnetic waves and how they are applied to microscopy and technology; they must be able to understand the chemistry behind micro and nanotechnologies; 	

	Applying knowledge and understanding . After the course the student should be able to:
	- understand how a micro and nanodevice is designed, fabricated and tested:
	- how micro and nano fabrication, characterization and
	- use simulation software tools to design and predict the operation of an electronic, photonic and microelectromechanical
	devices and systems;
	Making judgements. Students are guided to learn critically everything that is explained to them in class, to understand the behavior of the state of the art technologies for electronic and photonic and MEMS devices, and to design new devices.
	Communication. The students will be stimulated to be able to communicate with a varied and composite audience, not culturally
	homogeneous, in a clear, logical and effective way, using the methodological tools acquired and their scientific knowledge and, in
	particular, with and professional and scientific vocabulary. In
	recently proposed in high impact journals, and to make a presentation
	Learning skills
	Students must acquire the critical ability to understand the behavior of devices at the micro and nanoscale. They should be able to develop and apply indexed devices at the micro and nanoscale.
	continuation of studies at higher (doctoral) level or in the broader
	learning.
Metodi didattici	The teaching of the course will be a combination of projection of videos and slides and visits to labs with demonstration of state of the art technologies and clean-room equipments.
Modalità	Oral exam. Discussion on a state of the art nanotechnology for the fabrication
d'esame	of an electronic, photonic or microelectromechanical device.
Programma	Introduction to Nanotechnology.
	hours);
	Surface and Bulk Micro and Nanomachining: micro and nanotechnologies:
	electron beam lithography, scanning probe nanolithography, DUV and EUV
	lithography, X-Ray lithography, wet and dry etching, deposition and growth
	Characterization techniques
	Electronic microscopy, scanning probe microscopy, microanalisis,
	spectroscopy (10 hours);
	Applications of Nanotechnologies: examples of applications of
	nanotechnologies to electronic, photonic and micro and
	nanoelectromechanical devices and systems (4 hours);

	Device simulation Finite element (FEM) multiphysics modeling of an electronic, photonic and NEMS/MEMS device or structures (6 hours);
	Laboratories Laboratories on lithography, nanofabrication and characterization of
	nanostructures and devices (15 hours):
	- Visit of clean room and observation of the operation of nanotechnological tools:
	- Microscopy and characterization of samples and devices with different characterization tools.
Testi di	[1] Handouts and course notes.
riferimento	[2] Springer Handbook of Nanotechnology.
Altre	
informazioni	
utili	

SCHEDA INSEGNAMENTO

SEMICONDUCTOR PHYSICS AND TECHNOLOGY

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	FIS/03
Docente	Nicola LOVERGINE
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	II anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	MATERIALS FOR ELECTRONIC APPLICATIONS

Prerequisiti	Knowledge and understanding of the concepts tought in PHYSICS OF
Contenuti	
Obiettivi	
formativi	
Metodi	The Course is carried on through classroom theoretical lectures (about 90%
didattici	of the total teaching hours) and practical Laboratory sessions (about 10% of
	the teaching hours) , the latter focussing on the applications of MOVPE and
	MBE technology to the synthesis of compound semiconductor hetero- and
	nano-structures.
Modalità	The exam consists of an oral examination/colloquium aimed at determining
d'esame	to what extent the student has gained an overall knowledge of the topics
	treated within the course, and its ability to discriminate between different
	semiconductor technologies, their most relevant areas of applications and
	understand the fundamental physical-chemical principles behind these
	technologies.
Programma	Introduction to Semiconductors and their Applications, Crystallography of
	elemental and compound semiconductors, Electrons band structure of
	semiconductors, Point defects in semiconductors, Line and plane defects in
	semiconductors, Phase diagrams of semiconductor compounds, Production of
	Electronic Grade poly-Silicon, Bulk crystal growth technologies of c-Silicon,
	Bulk crystal growth technologies of III-V compound semiconductors,
	Fabrication of Semiconductor Wafers, Epitaxy and epitaxial heterostructures,
	Liquid Phase Epitaxy, Principles of VPE technology, VPE-chlorides and VPE-
	hydrides of Si and III-V compounds, VPE-hydrides of II-VI compounds,
	MOVPE technology of compound semiconductors, Laboratory I: VPE/MOVPE,
	MBE technology of compound semiconductors, Laboratory II: MBE.
Testi di	Fundamental University Physics Vol. 3 Quantum and Statistical Physics (M.

riferimento	Alonso E.J. Finn), Addison Wesley (1968).	
	Introduction to Solid State Physics (C. Kittel), Wiley (Chichester, 1991).	
	Handbook of Crystal Growth , Edited by D.T.J. Hurle (North-Holland,	
	Amsterdam-NL, 1993).	
	Vol. 2: Bulk Crystal Growth .	
	Vol. 3: Thin Films and Epitaxy	
Altre		
informazioni		
utili		

SCHEDA INSEGNAMENTO

BIOMATERIALS

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND/22
Docente	In attesa di assegnazione
Crediti Formativi Universitari	9
Ore di attività frontale	81
Ore di studio individuale	144
Anno di corso	II anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	MATERIALS FOR BIOMEDICAL APPLICATIONS

Prerequisiti	Basic knowledge on polymer science and technology is suggested.
Contenuti	The aim of the course is to provide students with basic knowledge on the
	design of medical devices for given applications, from biomaterial choice to
	manufacturing technologies. Particular attention is given to the development
	of the following devices: a) artificial prostheses; b) scaffolds for regenerative
	medicine and tissue engineering; c) devices for controlled drug release.
Obiettivi	This course aims to highlight the properties of biomaterials affecting
formativi	their performance as medical implants, scaffolds for tissue engineering
	and drug delivery devices. At the end of the course, students are
	expected to:
	- understand the physiological response to medical implants;
	- know the principles of scaffold design and related
	manufacturing technologies;
	- know the principles of drug delivery design;
	- Identify the most suitable biomaterial(s) for given
	applications;
	- Know the methods for bulk and surface characterization of
	biomaterials.
Matadi	The course includes lectures, leb experiences and seminars on selected
didattici	topics
Modalità	Final around will consists of an oral interview, during which the student is
d'esame	expected to show complete knowledge and comprehension of the tonics of
u esame	the course
Programma	
i i ogi amma	- Introduction on biomaterials and medical devices. Metals
	bioceramics natural and synthetic polymers (6 ore)
	sie cerumice, natar a una synanetic porymere (e ereji

	 Viscoelasticity of polymers and biological tissues. Hydrogels: definition and applications; thermodynamics and kinetics of swelling; crosslink density (rubber elasticity theory) (16 hours). Laboratory activities (4 hours). Diffusion in polymers and principles of drug delivery devices. Diffusion and erosion-based mechanisms. Examples: hydrogels, micro- and nano-particles. Transdermal drug release devices. Drug targeting for cancer therapy (14 hours). Physiological response to permanent implants. Definitions and examples of favourable or adverse responses. Wound healing: acute and chronic response. Examples of permanent implants: orthopedic prostheses; contact lenses; stents (8 hours). Principles of tissue engineering. Scaffold design: structure and properties; porosity, degradation, mechanical properties, manufacturing technologies. Bioreactors; cells for tissue engineering (16 hours). Laboratory activities (5 hours). Case studies: biomaterials and scaffolds for regeneration of nerves, bone, cartilage, tendons and ligaments. Biomaterials for cell encapsulation (9 hours). Classification and regulatory issues for medical devices (3 hours).
Testi di riferimento	 [1] Pietrabissa, R. Biomateriali per protesi e organi artificiali. Patron Editore. [2] Yannas I.V. Tissue and Organ Regeneration in Adults. Springer [3] Class notes and slides
Altre informazioni utili	

SCHEDA INSEGNAMENTO

CELL TISSUES INTERACTION

Corso di studio di riferimento	LM56 - CdL Magistrale in Materials Engineering and
	Nanotechnology
Dipartimento di riferimento	Dipartimento di Ingegneria dell'Innovazione
Settore Scientifico Disciplinare	ING-IND/34
Docente	Christian DEMITRI
Crediti Formativi Universitari	6
Ore di attività frontale	54
Ore di studio individuale	96
Anno di corso	II anno
Semestre	II
Lingua di erogazione	Inglese
Percorso	MATERIALS FOR BIOMEDICAL APPLICATIONS

Prerequisiti	Competenze di base in chimica e fisica
Contenuti	l corso fornisce le conoscenze di base sulle interazioni fra le cellule ed i
	tessuti biologici, con particolare riferimento allo studio delle proprietà
	rigenerative, introducendo nozioni fondamentali sulla tecniche di ingegneria
	tissutale. Il corso fornisce inoltre una panoramica sulle problematiche
	connesse alle tecniche di rigenerazione di tessuti ed organi.
Obiettivi	Conoscenze e comprensione . Al termine del corso, gli studenti devono
formativi	possedere un ampio spettro di conoscenze di base relative
	all'interazione fra le cellule ed i tessuti biologici. In particolare:
	- devono possedere solide conoscenze relative alla relazione fra
	struttura cellulare e funzione;
	- devono possedere gli strumenti cognitivi di base necessari alla
	dei tessuti
	Canacità di applicare conoscenze e comprensione. Alla fine del corso
	lo studente dovrebbe essere in grado di:
	io sudonee dovresse essere in grade di
	- Individuare la correlazione esistente tra funzioni cellulari,
	componenti della cellula e meccanismi di rigenerazione;
	- Dimostrare di avere acquisito competenze e capacità di
	valutazione adeguate per la risoluzione in autonomia di problemi
	concreti inerenti l'interazione fra materiali e tessuti.
	Autonomia di giudizio. Gli studenti sono stimolati ad individuare le
	proprietà dei materiali più importanti per determinate applicazioni in
	campo biomedicale e a pervenire a giudizi originali ed autonomi su

	possibili soluzioni a problemi concreti.
	Abilità comunicative. Ci si aspetta che gli studenti acquisiscano la
	capacita di relazionare su tematiche di interazione fra cellule e tessuti
	biologici con un pubblico vario e composito, in modo chiaro, logico,
	sintetico ed efficace, utilizzando le conoscenze scientifiche acquisite ed in particolar modo il lessico di specialità.
	Capacità di apprendimento. Gli studenti devono acquisire la capacità critica
	di rapportarsi, con originalità e autonomia, alle problematiche tipiche delle
	funzioni cellulari in relazione alla loro capatità di mettere in atto processi di
	rigenerazione.
Metodi	Lezioni frontali ed esperienze di laboratorio
didattici	
Modalità	Prove In itinere e prova orale finale
d'esame	
Programma	Introduction: cell-matrix interactions, cell-cell interactions, cell-material
	interactions
	Structure and function of ECMs
	Unit cell processes and integrins
	Repair vs. Regeneration
	Spontaneous vs. Induced Regeneration
	Surface of biomaterials and protein adsorption
	Methods of functionalization and analysis
	Phenotype changes induced by biomaterials
	Structural parameters affecting bioactivity
	Noncooperative cell-matrix interactions
	Cooperative cell-matrix interactions
	Tissue response to implants; examples
	Material biocompatibility
	Sterilization and its effects on materials and cell-material interactions
	Laboratory experience: synthesis of sterile biomaterials/scaffolds
	In vivo synthesis of organs: skin
	In vivo synthesis of organs: peripheral nerve
	Simplest synthetic pathways
	Implants for bone regeneration OR Implants for soft musculoskeletal tissues
Testi di	Dispense fornite dal docente
riferimento	
Altre	Il docente riceve previo appuntamento da concordare per email.
informazioni	
utili	