
Citation: Munaro, R.; Attanasio, A.;

Del Prete, A. Tool Wear Monitoring

with Artificial Intelligence Methods:

A Review. J. Manuf. Mater. Process.

2023, 7, 129. https://doi.org/

10.3390/jmmp7040129

Academic Editor: Antonio Padovano

Received: 12 May 2023

Revised: 2 July 2023

Accepted: 6 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Review

Tool Wear Monitoring with Artificial Intelligence
Methods: A Review
Roberto Munaro 1,* , Aldo Attanasio 1 and Antonio Del Prete 2

1 Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38,
25123 Brescia, Italy; aldo.attanasio@unibs.it

2 Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
antonio.delprete@unisalento.it

* Correspondence: r.munaro@unibs.it; Tel.: +39-303715584

Abstract: Tool wear is one of the main issues encountered in the manufacturing industry during
machining operations. In traditional machining for chip removal, it is necessary to know the wear of
the tool since the modification of the geometric characteristics of the cutting edge makes it unable
to guarantee the quality required during machining. Knowing and measuring the wear of tools is
possible through artificial intelligence (AI), a branch of information technology that, by interpreting
the behaviour of the tool, predicts its wear through intelligent systems. AI systems include techniques
such as machine learning, deep learning and neural networks, which allow for the study, construction
and implementation of algorithms in order to understand, improve and optimize the wear process.
The aim of this research work is to provide an overview of the recent years of development of tool
wear monitoring through artificial intelligence in the general and essential requirements of offline
and online methods. The last few years mainly refer to the last ten years, but with a few exceptions,
for a better explanation of the topics covered. Therefore, the review identifies, in addition to the
methods, the industrial sector to which the scientific article refers, the type of processing, the material
processed, the tool used and the type of wear calculated. Publications are described in accordance
with PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols).

Keywords: tool wear; flank wear; RUL; PRISMA-P; offline-online methods; artificial intelligence

1. Introduction

Tool condition monitoring is a key component of micromachining, macromachin-
ing and modern industry. Sectors such as aeronautics, aerospace, energy and electricity
frequently encounter materials that are more or less difficult to operate by conventional
cutting. The purpose of tool monitoring is to improve product quality, reduce costs and
maximise productivity.

From an economic point of view, Zhang et al. [1] stated that about 3–12% of the
production cost is related to the condition of the cutting tools and their replacement.
Therefore, the development of a Tool Condition Monitoring (TCM) system is essential to
effectively and efficiently understand the condition of cutting tools in order to predict and
optimize their lifetime. From [2,3], it can be summarized that an accurate and reliable TCM
system could generate a 10–50% increase in cutting speed, a 75% reduction in downtime
and a maintenance cost saving of approximately 30% [4,5].

Today, especially in consolidated technologies such as turning, milling and drilling,
the maximum cost reduction is sought to be competitive in the marketplace. In a shop floor,
the processing cycle of products is divided into several processing phases. The processing
phases include milling, drilling and turning. For each phase, different tools are used that
tend to wear out over time. Each processing phase has a specific production time. The sum
of the times of the working phases identifies the lead time of products. Consequently, a
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premature failure of one or more tools results in a loss of machine downtime, which affects
the productivity, quality and execution time of the products.

Industry 4.0, through its technologies such as intelligent sensors, signal acquisition,
data analysis and AI, can reduce or avoid these unexpected failures. Tool condition
monitoring (TCM) is a technique that has been studied for many years and publications
have shown how an accurate and correct result can be obtained in a single operation.
However, in today’s marketplace, a full and efficient TCM can rarely reliably perform
all functions.

Therefore, transferring these results to the industrial world is not always simple and
immediate, especially since in recent years the industrial world has increasingly focused
on varied and diversified products in almost all sectors, creating a continuous change in
production. Predicting tool wear and residual life is very difficult, but once a possible
solution has been found, it can significantly reduce downtime, loss and cost.

The purpose of this document is to present a review of instrument monitoring systems
over the last 10 years, from 2010 to 2022, with some exceptions, according to the PRISMA-P
checklist [6].

The objective of the review is to identify the methods of research used from 2010 to
2022 to improve tool wear monitoring through AI methods.

Checklist review writing points are objectives, eligibility criteria, sources of informa-
tion, search strategy, study articles, data elements, results and priority setting; Summary of
Data. Checklist details can be found in “Appendix A”.

The questions that the review asks to identify all of the features of tool wear monitoring
through artificial intelligence methods are:

(1) Which publications simultaneously use offline and online measurement methods to
detect tool wear?

The next questions include, as a fundamental point, whether the publications consid-
ered have a comparison between the offline and online methods of measuring tool wear.
Otherwise, they are not taken into account.

(2) What are the cutting parameters used? What types of tools are used in milling, turning
and drilling? What are the turning, milling and drilling machine tools used? What
are the metal materials processed?

(3) Which sensors can detect and interpret these signals in milling, drilling and
turning processes?

(4) What are the characteristics that can be extracted in the time domain, frequency do-
main and time-frequency domain? Are we also using raw data, or other signal signals?

(5) What are the artificial intelligence algorithms that predict tool wear?
(6) What are the performances that use algorithms to predict tool wear?
(7) What is the value of the performances that use the algorithms to see the tool wear?

2. Methods of Research Level, Research Item and Research Number of Published
Articles Found
Eligibility Criteria and Search Strategy

The included articles were reviewed and published in international classified journals.
They had a release date ranging from 2010 to 2020, with some exceptions. The searches
carried out indicated the title of the research, the years of publication and the research
field. Table 1 shows the search strategies adopted. Five levels of research were defined with
different searching rules (i.e., ITEMS). In this way, from 21,760 articles, 77 were selected as
the more important.
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Table 1. Research level, research items and number of published articles found.

Research
Level Items Total Articles

Found
Database
Reasearch

FIRST

Research title: tool wear
Years of publication: 2010–2020

Thematic areas: engineering
Type of article: review article and research article

21,760

SCOPUS, GOOGLE
SCHOLAR, WEB OF

SCIENCES.
Based on DOI

SECOND

Research title: tool wear monitoring, learning
Years of publication: 2010–2020

Thematic areas: engineering
Type of article: review article and research article

2959

THIRD

Research title: tool wear monitoring, learning
Years of publication: 2010–2020

Thematic areas: engineering, no micro cutting
Type of article: review article and research article

116

FOURTH

Research title: tool wear monitoring, learning
Years of publication: 2010–2020

Thematic areas: engineering, no micro cutting,
only metal materials

Type of article: review article and research article

97

FIFTH

Research title: tool wear monitoring, learning
Years of publication: 2010–2020

Thematic areas: engineering, no micro cutting,
only metal materials

Type of article: review article and research article.
In direct and indirect methods of tool

wear measurement,
measurement through images, i.e., cameras,

optical measurements, is not considered

77

3. Selection of Offline and Online Publications and Related Data Extraction from
the Publications

A standard electronic data collection form was used for data extraction. The 77 items
selected, as shown in Table 1, contain numerous data that characterise the method used to
calculate tool wear. The data may be the type of tool wear calculated, the machine tool used,
the cutting parameters in the mechanical processing or the type of tool used to perform the
mechanical processing. To identify and explain the data for the 77 items, we defined the
flowchart shown in Figure 1. The choice of data in the sections was divided into two parts.
The first part indicated the general and essential requirements for monitoring tool wear:
(1) type of mechanical processing; (2) type of tool; (3) type of wear; (4) type of machine tool;
(5) type of processed material; (6) industrial sector concerned. The second part showed
the comparative methods used to calculate tool wear. Two methods were identified, one
offline and one online. In the offline method, the data were: (1) cutting parameters; (2) wear
calculation equipment. In the online method, in addition to considering the offline data,
there were: (1) the tool wear prediction algorithm; (2) the data acquisition method (sensor);
(3) the data acquisition hardware system; (4) feature extraction of the sensor signal and
performances of AI; (5) software used for AI; (6) the industrial sector.

Each variable indicated in the flowchart in Figure 1 specifies that the selection of the
articles, and thus the extraction of the data from them, was performed through certain
characteristics. For mechanical processing, turning, milling or drilling operations were
specified; for the type of tool, the technical characteristics of the tool, such as the diameter,
the material, the coating and the type of ISO 1832 [7]. classification were indicated; for the
type of tool wear, the wear on the flank (VB), the depth of the wear crater (KT), the surface
area of the wear (S), the radial wear (RW), the wear of the diameter (DW), the RUL (tool
remaining useful life), the tool wear rate and the flank wear width (FWW) were reported;
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for the type of machine tool, the type of machine tool used to carry out the experiment was
indicated, such as a lathe, a milling machine or a drilling machine; for the type of material,
the workpiece on which the milling, turning and drilling operations are performed was
indicated; for the type of industrial sector, the area in which the research had been applied
or could be applied in the future was indicated.
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Figure 1. The flowchart representing the method followed for data extraction.

Tool wear is calculated using two measurement methods: the static offline method and
the dynamic inline method. The term static refers to the ability to measure and visualize
the trend of tool wear immediately after the production of a predefined number of parts.
This means stopping the process for a while and then rebooting it. Otherwise, dynamic
methods constantly measure tool wear without stopping the process. The measurement
can be directly (by means of vision sensors) or indirectly made by measuring vibration or
forces. Sensor signals are fed into an algorithm that predicts future tool wear. Prediction
continuously improves over time.

The variables entered in the online method, as indicated in the flow diagram in
Figure 1, were: the algorithm indicates the type of algorithm used to predict the wear of
the instrument, such as the K-stellar algorithm; the data acquisition method indicates the
type of sensors used to acquire signal changes during mechanical processing. Sensors can
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include dynamometers, accelerometers and acoustic emission sensors. The dynamome-
ter measures force, the acoustic emission sensor measures sound and the accelerometer
measures vibration. The hardware data acquisition system specifies the type of hardware
system for the acquisition of sensor data during processing. It can consist of a PC and
a data acquisition device; the extraction characteristics of the signal sensor indicate the
fundamental characteristics, such as the mean, variance and RMS of the analysed data,
while performance indicates the quality of the algorithm AI for the calculation of wear.
Usually, before the construction phase of an AI model, the dataset is analysed and manipu-
lated to extract significant properties from those already available. This process is called
feature extraction and plays a critical role in creating a robust machine learning strategy.
Software algorithm means the name of the software used to run the algorithm. Examples
of software are MATLAB, tensorflow and Roboream; the industry sector indicates whether
the experience identified in the article can be applied in an industrial context and with
what accuracy.

4. Results of Research
4.1. Introduction Selection and Inclusion of Publications

After the screening of 21,760 publications, 2959 were recovered and codified. Without
considering the microcuttings, 116 articles were identified. Of these 116 articles, 97 in-
volved calculating tool wear using AI for micromachining, such as turning, drilling and
milling. The acquisition of signals through cameras and optical systems was not considered.
Subsequently, 77 articles were identified as being suitable for the inclusion criteria. For
further details on the selection of the articles, Table 1 shows all specifications.

4.2. General and Essential Requirement of Machining Operations, Number of Articles, Type of
Wear, Type of Machine and Type of Material

Of the seventy-seven articles selected, fifty-one related to milling, nineteen related
to turning, five related to drilling and two related to all three processes. Three types of
cutters were identified in the milling process: insert mills with hard metal inserts, solid
carbide mills and solid mills in high-speed steel. Two types of tools were identified in
the drilling process: solid carbide drills and solid high-speed steel drills. CNMG inserts
tended to be used in the turning process. The inserts used were 95% coated hard metal
and 5% ceramic. The wears calculated on the tools were the flank wear, the RUL and
the tool wear rate. The machines used were vertical milling machines, vertical drilling
machines and traditional lathes. The materials processed by the machine tools with the
related tools were: cast irons, steel alloys, super alloys and aluminium alloys. In steel
alloys were machined: C45, stainless steel (such as AISI 316), 42CrMo4, S235JR, 1018 steel,
1040 steel, mild steel, tempered steel and AISI M3: 2. Super alloys are machined titanium
alloys, Inconel 718 and Inconel 625. Aluminium alloys are machined aluminium 6061, 5053,
6082, 2024, 7022 and 7075. Table 2 shows the general and essential requirements.

Table 2. General and essential requirements.

General and Essential Requirements

Machining
Operations Articles Type of Wear Type of Tool Type of Material Type of Machine

Milling [8] VB high speed steel mill Super alloy: Titanium alloy vertical machine

Drilling [9] VB carbide drill Super alloy and Steel:
Inconel718 and C45 vertical machine

Milling [10] VB high speed steel mill Alluminium: Hardened 6061 vertical machine

Milling [11] VB insert mill Alluminium:
alluminimu alloy vertical machine

Milling [12] VB and RUL insert mill / vertical machine
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Table 2. Cont.

General and Essential Requirements

Machining
Operations Articles Type of Wear Type of Tool Type of Material Type of Machine

Milling [13] VB carbide mill Alluminium:
6061 alluminium vertical machine

Milling [14] VB insert mill Super alloy: Titanium alloy vertical machine

Milling [15] VB insert mill / vertical machine

Milling [16] VB insert mill Super alloy: Inconel 718 vertical machine

Milling [17] VB insert mill Steel: C45 vertical machine

Turning [18] VB cemented carbide
tool inserts / lathe machine

Milling [19] VB insert mill Super alloy: Ti6Al4V vertical machine

Milling [20] VB carbide mill Steel: Stainless steel vertical machine

Turning [21] VB uncoated carbide
inserts CNMG120408 Super alloy: Inconel 718 lathe machine

Milling [22] VB high speed steel mill

Alluminium: aluminum
alloys 5053-H111,
6082-T6, 2024-T3,
7022-T6, 7075-T6

vertical machine

Turning [23] VB tool inserts TNMM
110408 P25 Steel: 42CrMo4 lathe machine

Turning [24] VB
insert

CNMG120404-MB
NC30P grade 5

Steel: JIS S45C carbon steel lathe machine

Milling [25] VB insert mill / vertical machine

Turning [26] VB coated carbide insert
CNMG120408 SM 1105 Super alloy: Inconel 718 lathe machine

Milling [27] VB insert mill Super alloy: Ti-6AI-4V vartical machine

Turning [28] VB turning tool Super alloy: Inconel 718 lathe machine

Drilling [29] VB high speed steel drill Super alloy: Inconel 625 vertical machine

Turning [30] VB carbide insert
TNMG160408 Steel: Mild steel lathe machine

Turning [31] VB
carbide insert
CNMG120408

MF1 CP200

Super alloy: Titanium
Metal matrix

Composite (Ti MMC) 10 wt%
TiC/Ti-6Al-4V

lathe machine

Milling [32] VB insert mill Super alloy: Titanium alloy
Ti-5Al-5Mo-5V-1Cr-1Fe vertical machine

Milling [33] VB carbide mill Steel: steel block of S235JR vertical machine

Milling [34] VB insert mill Super alloy: Ti-6Al-4V vertical machine

Milling [35] VB insert mill Super alloy: Ti-6Al-4V vertical machine

Turning [36] VB
coated sintered
carbide insert
SNUN120408

/ lathe machine
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Table 2. Cont.

General and Essential Requirements

Machining
Operations Articles Type of Wear Type of Tool Type of Material Type of Machine

Milling [37] VB high speed steel mill Alluminium:6082 Alluminium vertical machine

Milling [38] VB and RUL carbide mill Super alloy: Titanium alloy vertical machine

Milling [39] RUL carbide mill Super alloy: Titanium alloy vertical machine

Turning [40] VB

Uncoated carbide
inserts SPGN 422,

grade K68.
Ceramic inserts

Greenleaf SNGN 452,
grade WG-300

Steel and Super alloy:
4140 steel (HRC35),

Inconel 718 and Ti-6Al-4V
lathe machine

Milling [41] VB and RUL insert mill Steel: stainless-steel vertical machine

Milling [42] VB carbide mill Stell and Super alloy:
C45 steel, Inconel 718 vertical machine

Drilling [43] VB carbide drill / vertical machine

Milling [44] VB insert mill Steel: 1018 steel at
121 HB hardness vertical machine

Milling [45] VB, breakage and
chipping insert mill Steel: 42CrMo4 vertical machine

Milling [46] VB insert mill Steel: 1018 steel at
121 HB hardness vertical machine

Milling [47] VB carbide mill / vertical machine

Milling [48] VB and tool
breakage. high speed steel mill Steel: 1040 cold rolled steel vertical machine

Drilling [49] VB high speed steel drill Steel: AISI 316 stainless
steel plate vertical machine

Milling [50] VB insert mill Steel: stainless steel, HRC52 vertical machine

Drilling [51] VB high speed steel drill Steel: mild-steel vertical machine

Milling [52] VB and roughness insert mill Stell and Super alloy: H13
steel and Inconel 718 vertical machine

Milling [53] VB insert mill Super alloy: titanium alloy vertical machine

Milling [54] VB insert mill / vertical machine

Milling
Turning
Drilling

[55]

VB, RUL
chipping, breakage,
corner wear, rake
wear, notch wear

milling tool,
turning tool,
drilling tool

Ti- and Ni-based alloys,
hardened steels,
aluminum alloys

vertical machine,
turning machine

Milling [56] VB and RUL insert mill cast iron: cast iron and
stainless steel J45 vertical machine

Milling [57] RUL insert mill cast iron: cast iron and
stainless steel J45 vertical machine

Milling [58] VB carbide mill Steel: stainless steel, HRC52 vertical machine

Turning [59] VB carbide insert Steel: AISI 316 stainless steel lathe machine

Milling [60] VB carbide mill Steel: material AISI M3:2,
hardened to 62 HRC vertical machine

Milling [61] VB carbide mill Super alloy:
Ti-6Al-4V titanium vertical machine



J. Manuf. Mater. Process. 2023, 7, 129 8 of 48

Table 2. Cont.

General and Essential Requirements

Machining
Operations Articles Type of Wear Type of Tool Type of Material Type of Machine

Milling [62] VB carbide mill Steel: Tempered steel C45 vertical machine

Milling [63] VB insert mill Super alloy: Ti6Al4V alloy vertical machine

Milling [64] VB insert mill Super alloy: Ti–6Al–4V vertical machine

Milling [65] VB carbide mill Super alloy: Inconel 718 vertical machine

Turning [66]
VB,

roughness
and breakage

turning tool Metal alloy lathe machine

Milling [67]

VB, breakage, light
wear, middle wear,
severe wear, sharp

tool, worn
tool, chipping

Carbide mill, insert
mill,

high speed steel mill

Super alloy, steel alloy and
alluminium alloy vertical machine

Turning [68] VB Carbide insert
CNMG-432

Alluminium: aluminum
alloy 6061 lathe machine

Turning [69] VB Carbide WNMG
084 08- QM

Steel alloy: stainless steel
AISI 316 lathe machine

Turning [70] Tool wear rate
uncoated carbide

insert CCMT
060204 TT.

cast iron: cast iron (grey cast
iron-FG 15)

and an alloy steel (En 24)
lathe machine

Milling [71] VB carbide mill Super alloy: Inconel 718 vertical machine

Milling [72] VB insert mill Steel: 1018 steel vertical machine

Milling [73] VB insert mill Steel: 42CrMo4 vertical machine

Milling [74] VB insert mill Steel: ASSAB718HH vertical machine

Milling [75] VB insert mill cast iron: CGI 450 vertical machine

Milling [76] RUL carbide mill Steel: tempered steel (HRC52) vertical machine

Milling [77] tool wear status insert mill Super alloy: Ti-6Al-4V vertical machine

Milling [78] tool wear
rate, RUL carbide mill / vertical machine

Turning [79] VB ceramic insert
CNMG120408-HM Steel: C45 steel lathe machine

Turning [80] VB round ceramic inserts
RNGN CC670 Super alloy: Inconel 625 lathe machine

Milling [81] VB carbide mill Super alloy; Inconel 718 vertical machine

Turning [82] roughness coated carbide insert
TiCN/Al2O3/TiN Steel: AISI 1060 lathe machine

Turning [83] VB carbide insert Alluminium: alluminum alloy lathe machine

4.3. Introduction Methods of Measurement

Tool wear is calculated using two measurements: the offline measurement, which is
static, and the online measurement, which is dynamic. By comparing the two measure-
ments, the tool wear can be calculated with greater accuracy. The diagram in Figure 2 [58]
shows how to compare the two measurements. In the offline measurement, the machine
performs the machining and, after a certain amount of workpieces or minutes worked,
stops the machining and, through a microscope, the tool wear is measured. Wear is then
measured until the tool is replaced because it is worn. In the online measurement during
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the operation of the machine, sensors inserted inside the machine detect the evolution
of the wear of the tool. The sensors generate signals that are first translated by the data
acquisition system and then analysed to create the correct dataset to be inserted into the AI.
AI, through its intelligent algorithm, predicts the wear trend of tools. The correct compari-
son between the two measurements predicts the wear of the tool with great accuracy. All
seventy-seven selected articles compared the two measurements. The differences are in
terms of the process, the cutting parameters, the type of microscope, the sensors used, the
data acquisition system and the AI algorithm.
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4.3.1. Offline Measurement

The machine tool performs the operations of milling, drilling or turning and, after
a certain number of pieces or minutes worked, stops the machining and, through a mi-
croscope, the tool wear is measured until the tool is replaced because it is worn. The
cutting parameters that define the lifetime of the tool during machining are dependent on
the general and essential requirements. The type of machine, the type of material to be
machined and the type of tool determine which cutting parameters should be used. The
cutting parameters that characterize the processes analysed in the articles are the cutting
speed, the spindle speed, the axial depth of cut, the radial depth of cut, lubrication, the
feed rate, the feed for the tooth and the diameter of the tool. Each individual cutting
parameter influences the machining accuracy in the geometrical measurement obtained
and in the surface roughness. Moreover, the variation of these cutting parameters consid-
erably varies the lifetime of the tool during mechanical machining. Digital microscopes,
optical microscopes, laser scanning microscopes, 3D digital microscopes, video measuring
systems, profile projectors and scanning electron microscopes (SEM) are used to measure
the variation in wear over time.

Table 3 shows the selection of cutting parameters for the different processing opera-
tions. Regarding milling, around half of the selected articles chose the cutting speed and
half of the articles chose the spindle speed. The depth of cut and the feed rate were present
in almost all articles. Regarding turning, all articles chose the cutting speed, the depth of
cut and the feed rate. Regarding drilling, the choice was uniform for all cutting parameters.
Only five articles chose the tool diameter and lubricant as cutting parameters. The “x”
indicates that type of cutting parameters is present in the article.
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Table 3. Cutting parameters of machining operations.

Cutting Parameters

Machining
Operations Articles Cutting

SPEED
Spindle
Speed

Depht of Cut,
Radial Depht

of Cut and Axial
Depht of Cut

Feed, Feed Rate,
Feed for Tooth

Diameter
of Tool Lubrificant

Milling [8] x x x

Drilling [9] x

Milling [10] x x

Milling [11] x x x

Milling [12] x x x

Milling [13] x x

Milling [14] x x x

Milling [15] x x x

Milling [16] x x x

Milling [17] x x x

Turning [18] x x x

Milling [19] x x x

Milling [20] x x x

Turning [21] x x x

Milling [22] x x x

Turning [23] x x

Turning [24] x x x

Milling [25] x x

Turning [26] x x x

Milling [27] x x x

Turning [28] x x x

Drilling [29] x x

Turning [30] x x x

Turning [31] x x x

Milling [32] x x x

Milling [33] x x x

Milling [34] x x x

Milling [35] x x

Turning [36] x

Milling [37] x x x

Milling [38] x x

Milling [39] x x x

Turning [40] x x x

Milling [41] x x x

Milling [42] x x x

Milling [44] x x

Milling [45] x x x
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Table 3. Cont.

Cutting Parameters

Machining
Operations Articles Cutting

SPEED
Spindle
Speed

Depht of Cut,
Radial Depht

of Cut and Axial
Depht of Cut

Feed, Feed Rate,
Feed for Tooth

Diameter
of Tool Lubrificant

Milling [46] x x

Milling [47] x x x

Milling [48] x x

Drilling [49] x x x

Milling [50] x x x

Drilling [51] x x x

Milling [52] x x x

Milling [53] x x x

Milling [54] x x x

Milling
Turning
Drilling

[55] x x x x

Milling [56] x x x

Milling [57] x x

Milling [58] x x x

Turning [59] x

Milling [60] x x

Milling [61] x x x

Milling [62] x x x

Milling [63] x x

Milling [64] x x x

Milling [65] x x x

Turning [66] x x x

Milling [67] x x x

Turning [68] x x x

Turning [69] x x

Turning [70] x x x

Milling [71] x x

Milling [72] x x x

Milling [73] x x x

Milling [74] x x x

Milling [75] x x x

Milling [76] x x x

Milling [77] x x x

Milling [78] x x x

Turning [79] x x x

Turning [80] x x x
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Table 3. Cont.

Cutting Parameters

Machining
Operations Articles Cutting

SPEED
Spindle
Speed

Depht of Cut,
Radial Depht

of Cut and Axial
Depht of Cut

Feed, Feed Rate,
Feed for Tooth

Diameter
of Tool Lubrificant

Milling [81] x x x

Turning [82] x x x

Turning [83] x x x

4.3.2. Online Measurement

Online measurement is an indirect method of calculating tool wear that takes place
through sensors, data acquisition systems, data analysis with relative feature extraction
and data entry into the AI. The more or less accurate prediction of tool wear is compared
with the direct method when the offline measurement of tool wear has taken place, as
described above, through microscopes. Figure 3 [55] shows a diagram of how tool wear
can be predicted in online technology.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 13 of 51 
 

 

 
Figure 3. Online measurement scheme. 

The diagram in Figure 3 illustrates the steps required to obtain an online prediction 
of tool wear. The two photos inside Figure 3 represent the one on the left the inside of a 
machine tool, while the one on the right the one taken by a tool wear microscope. From 
any turning, milling and drilling process, it is possible, with the online method, to meas-
ure the different types of tool wear, such as VB, RUL and the state of tool wear. This meas-
urement is carried out with hardware components, such as vibration sensors, acoustic 
emission sensors (AE) and force sensors, as well as current, power and sound sensors. The 
data collected online by the sensors, i.e., the output responses of the process, are processed 
through the software part. Based on signal characteristics, artificial intelligence algorithms 
predict tool wear with some accuracy. Tables 4–6 present the number of items reported as 
a function of the process output parameters. Among the selected articles, force, vibration 
and acoustic emission signals were the most widely used to indirectly identify tool wear. 
The “x” indicates that type of signal is present in the article. 

Table 4. Sensor signals in turning articles. 

TURNING 

Articles Cutting 
Force Signal Vibration 

Acoustic 
Emission 

Signal 
Sound Current Power Number of 

Signals 

[18] x           1 
[21] x x x       3 
[23]   x         1 
[24] x x         2 
[26] x x         2 
[27] x           1 
[28] x x x       3 
[30]   x         1 
[31]     x       1 
[36] x           1 

Figure 3. Online measurement scheme.

This section explains each portion of Figure 3 by identifying the advantages, applica-
bility and limitations of the selected articles.

The diagram in Figure 3 illustrates the steps required to obtain an online prediction
of tool wear. The two photos inside Figure 3 represent the one on the left the inside of a
machine tool, while the one on the right the one taken by a tool wear microscope. From any
turning, milling and drilling process, it is possible, with the online method, to measure the
different types of tool wear, such as VB, RUL and the state of tool wear. This measurement
is carried out with hardware components, such as vibration sensors, acoustic emission
sensors (AE) and force sensors, as well as current, power and sound sensors. The data
collected online by the sensors, i.e., the output responses of the process, are processed
through the software part. Based on signal characteristics, artificial intelligence algorithms
predict tool wear with some accuracy. Tables 4–6 present the number of items reported as a
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function of the process output parameters. Among the selected articles, force, vibration
and acoustic emission signals were the most widely used to indirectly identify tool wear.
The “x” indicates that type of signal is present in the article.

Table 4. Sensor signals in turning articles.

TURNING

Articles Cutting
Force Signal Vibration

Acoustic
Emission

Signal
Sound Current Power Number

of Signals

[18] x 1

[21] x x x 3

[23] x 1

[24] x x 2

[26] x x 2

[27] x 1

[28] x x x 3

[30] x 1

[31] x 1

[36] x 1

[40] x x 2

[59] x x x 3

[68] x x 2

[70] x x 2

[79] x x x 3

[80] x x x 3

[83] x x 2

Table 5. Sensor signals in milling articles.

Articles Cutting Force
Signal Vibration

Acoustic
Emission

Signal
Sound Current Power Number

of Signals

[8] x x x 2

[10] x 1

[11] x 2

[12] x x x 3

[13] x 1

[14] x 1

[15] x 1

[17] x x 2

[19] x x 2

[20] x 1

[22] x x x 3

[25] x x 2

[27] x 1

[32] x 1

[33] x 1

[34] x 1

[35] x 1

[37] x 1
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Table 5. Cont.

Articles Cutting Force
Signal Vibration

Acoustic
Emission

Signal
Sound Current Power Number

of Signals

[38] x x 2

[39] x x 2

[41] x x x 3

[42] x x x 3

[44] x 1

[45] x 1

[46] x 1

[47] x x 2

[48] x 1

[50] x x 2

[52] x 1

[53] x 1

[54] x 1

[56] x x 2

[57] x x x 3

[58] x x 2

[60] x 1

[61] x 1

[62] x 1

[63] x 1

[64] x 1

[65] x 1

[71] x x 2

[72] x 1

[73] x 1

[74] x x 2

[75] x x 2

[76] x 1

[77] x 1

[78] x x x 3

[81] x x x 3

Table 6. Sensor signals in drilling articles.

Studies
Cutting

Force
Signal

Vibration
Acoustic
Emission

Signal
Sound Current Power Number

of Signals

DRILLING

[9] x x 2

[29] x x 2

[43] x x 2

[49] x 1

[51] x 1



J. Manuf. Mater. Process. 2023, 7, 129 15 of 48

4.4. Type of Sensors and How They Are Used in Research Experiments
4.4.1. Cutting Force Sensor

The cutting force has a direct but non-linear complex relationship with the tool wear
mechanism. A force sensor (or dynamometer) is used to collect force and torque data. This
measurement method is the most common in the selected items; it uses ten turning items,
twenty-eight milling items and three drilling items. In milling, force screws are used to
calculate tool side wear, RUL [12] and tool wear progress [14]. In the different milling
articles using dynamometers or force signal calculation sensors, the cutting force and
torque are measured [16]. The force signal is also used to calculate Kc [6] (e.g., the specific
cutting force). Force calculation devices in almost all milling articles are inserted under
the workpiece device [27]. However, there is also a rotating cutting force dynamometer
(RCD) that has advantages over fixed dynamometers; for example, the pieces cut can be
independently measured on the rotating tool of the workpiece size and the measurement
can be carried out in any spatial position (four- or five-axis milling) [16]. For turning
articles, the wear of the tool side and the state of the tool used or not are calculated [28]. A
strain gauge was used to measure the force in [24]. The strain gauge is a low-cost sensor
and can be easily and firmly attached to the surface of the tool holder. It can measure
both the cutting force and the feed force. As shown in Ref. [26], the force sensor system
can also measure the radial force (Fr), the thrust force (Ft) and the cutting force (Fc). In
drilling articles, tool side wear is calculated using force signals. The dynamometer is always
mounted under the workpiece support, as in milling. As shown in Ref. [51], a strain gauge
is used to measure both the cutting force and torque.

The signals acquired by the cutting force sensors are influenced by a variety of internal
and external technical characteristics of the machine tool. As shown in Ref. [66], machine
tool elements may vary the cutting conditions, and therefore, the measurement of static
cutting forces. As shown in Ref. [55], the influence on the cutting forces is due to the cutting
fluid, which causes deviations and fluctuations of the signal, and to the sources of noise
and vibrations due to machine tools operating on the same production line. A CNC turret
machine utilizes milling, turning and drilling tools to make a product. It is not easy to
understand which sensors to use, but above all, to set the special arrangements according
to the characteristics of the tools [69].

4.4.2. Vibration Sensor

The signals obtained from vibration sensors are primarily used in industrial environ-
ments for ease of use and cost savings. They, like all signals, depend on process parameters,
such as the cutting conditions, but also on the technical construction characteristics of
the machine tool and on the material of the piece to be produced. However, they have
a sensitivity issue. In some cases, this prevents distinguishing between different sources
of vibration signals that do not allow accurate vibration acquisition. It mostly occurs in
industrial environments [55,79]. There were 21 milling articles consisting of vibration.
During milling, it is very important to identify where the vibration sensor is located. It can
be mounted on the fixture of the workpiece [12] or on the spindle [19], or two sensors are
used, one mounted on the spindle and the other on the fixture of the workpiece [41,42],
or directly mounted on the workpiece [47,50]. As shown in Ref. [33], a wireless sensor
has been used, which was placed next to the processed material on the CNC milling table.
In this position, the vibrations due to the milling process are directly transmitted to the
sensor. In all situations, the sensor is exposed to cooling fluid and hot metal chips during
material processing.

In turning articles, the sensor is often mounted on the tool holder [21,23,26]. In
Refs. [59,69], the sensor was attached to the machine turret. A vibration sensor’s perfor-
mance is dependent on a variety of factors that can be interdependent. Two important
factors are the parameters of the process and the working environment. By process param-
eters, we mean the cutting speed and feed rate, while by working environment, we mean
the industrial environment or laboratory experiment. They can drastically reduce sensor
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performance during signal acquisition [28]. During drilling, the vibration sensor is used to
monitor the wear on the tool’s edge [49].

4.4.3. AE or Acoustic Emission Sensor

When a mechanical chip removal process occurs, some sort of energy is released
in the form of mechanical vibrations. This energy is captured by the Acoustic Emission
(AE) sensor. It is very reliable, particularly in industrial environments because it has a
higher frequency than machine tool vibrations and the external environment. The Acoustic
Emission (AE) sensor defines important process characteristics such as deformation in
the cutting area, sliding friction between the tool and the workpiece and chip sliding on
the tool [35,56]. The total number of articles considering acoustic emission were: nine in
milling, eight in turning and one in drilling.

In milling, the acoustic emission sensor is used to compute tool flank wear, RUL [12,57]
and tool wear progression [78]. The acoustic emission sensor can be applied to the work-
piece clamping equipment [22] or mounted on the workpiece [35]. Two acoustic emission
sensors may be used, one mounted on the spindle and the other on the workpiece clamping
equipment [22,41,57].

On turning, acoustic emission sensors are inserted on the tool holder locked by a
screw [21,28,70,79]. They can also be inserted on the machine turret [59] or mounted on the
work piece [68]. Ref. [68] shows that the signal generated by the acoustic emission is a good
signal for predicting tool wear. However, [31] identifies high uncertainties regarding how
sensitive the EA sensor is to changes in the environment (such as temperature, humidity
and noise).

During drilling, the sensor is installed on the workpiece. Due to the centre hole, only
the lateral surface of the drilling tool contributes to the friction-generated EA signal [9].

4.4.4. Sound Sensor

In machining, audible sound generation is a common consequence due to the friction
between the tool, workpiece and chip flow. Contrary to AE, this sound is transmitted by
an airline and can be captured by microphones. However, in workshops, there are many
other sources of sound; for example, near machines and machining processes, robots, parts
loading or unloading, air blowing, etc. Therefore, the use of audible signals for reliable
TCM continues to appear impractical [55,66]. Sound sensors, or microphones, are only used
for milling. No articles have been identified in turning and drilling that apply these sensors.

There were seven research articles that used a microphone for recording audio signals
while milling. For example, a microphone or four microphones were used in the calculation
of tool wear in sections [10,13,42,48,73]. Refs. [44,46] used a spherical Beamformer with
32 microphones. However, in any event, the sound signal is used to identify the flank wear
of the tool.

4.4.5. Current and Power Sensor

A machine tool has axes and spindles. They are controlled by engines that require
current and power to be activated. When a product is manufactured, the machine tool
hardware/software system activates the spindles and axes in different ways, according to
the NC program instructions. The power and current used to perform chip removal are
directly proportional to the cutting force used by the tools to process a product. These two
power and current signals are thus very useful to characterise the wear of a VB tool. The
hardware system allows for the easy extraction of supply and current signals [55].

The number of articles that analysed the current and power signals was sixteen: twelve
in milling, two in turning and two in drilling.

During milling, current and power signals can be acquired through Open Platform
Communications Unified Architecture (OPCUA) [8,38]. In Ref. [11], three AC-DC transduc-
ers and pulsed current signals were used for the measurement of spindle current signals.
In many articles, the power was measured by devices that measured the power during
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processing [37,52]. In many articles, the power of the spindle was obtained via the NC code
and current via a current sensor inside the spindle [39,41,54,57,62]. In Ref. [75], the current
is measured by induction clamps.

During rotation, the power can be measured using the power meter inserted into the
axis motor [40] or the current is removed from the axis motor [79].

When drilling, the power may be measured by the power meter inserted into the
spindle motor [29].

This technique may have different disadvantages. Among them, it has been noted
that motor current signals contain a significant amount of noise, preventing the detection
of small fluctuations in cutting force and the loss of high frequency components due to
filtering [67].

In recent years, researchers have paid a great deal of attention to the collection and
analysis of power data. The current or power signal is therefore easy to obtain without
interfering with the machinery’s individual internal processes. It takes place using minimal
equipment with no special or costly measures. It becomes a reliable system and is useful to
monitor the wear condition of the tool and anticipate early failures. As a result, an online
power data measurement system seems more feasible and practical, and has high potential
for the unmonitored production environment [55].

4.5. Features of Signal, AI Methods and Performances
4.5.1. Introduction of Features Sensor Signal

The signals used to determine and predict tool wear as described above come from a
variety of sensors.

They depend on the time and the frequency of acquisition by the sensors. The ac-
quisition of any sensor signal, to be correctly characterized in the prediction of tool wear,
is filtered and linearized through processing and extraction processes. This is carried
out to minimize scanning errors as much as possible and achieve optimal results. Signal
processing processes tend to occur in terms of time, frequency and time-frequency [55].

The extraction process in the different domains is very important in determining the
feature parameters of the signal. They provide input data for a tool wear monitoring
system. The feature parameters must be properly selected during the acquisition for two
main reasons: the significant increase in computational calculation and the decrease in
speed in obtaining the optimal result. That is why the choice of these parameters in the
time, frequency and frequency-time domain ensures the correct and accurate prediction of
tool wear [67].

4.5.2. Features Sensor Signal in Different Domains: Time Domain—Frequency
Domain—Time Frequency Domain—Other

Analysing all articles, the domain most used to extract their features was time the
domain. Time domain features were extracted in 32 articles, frequency domain features
were extracted in 26 articles and frequency domain features were extracted in 20 articles.
There were also 32 articles in which raw data or other types of features were used as a
dataset for the AI.

Time domain: this is the most widely used domain by which to extract force signals in
terms of magnitude. The values that are extracted are root mean square (RMS), mean, mean
square, maximum variance (MAX), peak and kurtosis coefficient (Kur), standard deviation
(Std) and asymmetry (Ske) [8,15,18,19,23,27]. Most of the selected articles involving the
extraction of time domain features are cutting force and vibration signals acquired by the
sensors. The features extracted in the time domain are easily extractable from the signals
collected during the acquisitions, but they must be collected in the correct and precise way
because they are subject to interference and disturbances [66].

In the frequency domain, the most extracted feature of the signals during acquisition
is the Fast Fourier Transform (FFT). Data in the frequency and time domains are mainly
extracted when vibration, sound and force signals are present [55].
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The values mostly extracted in the various frequency domains are: the root mean
square frequency, the centroid frequency and empirical mode decomposition (EMD), peak
value, variance and kurtosis, the power spectrum averaging (MPS), the sum of total
band power (STP), the peak band power (PBP), the maximum frequency of peak band
power (FPBP), the variance of band power (VBP), the skew of band power (SBP), the
kurtosis of band power (KBP) and the related spectral peak per band (RSPB). The frequency
domain adequately detects the tool wear, but due to disturbances in the signal acquisition,
sometimes extracting the features in the frequency domain is not so simple [8,14,19,66].

The time-frequency domain is used to extract characteristics from nonstationary sig-
nals, especially force, sound and vibration sensors. The extracted signals provide informa-
tion on the singularity of a signal over time and frequency. The extracted characteristics are
called wavelet transformations and are continuous, discrete and steady [8,10,13,19,44,46,55].

The values extracted in this area are by wavelet analysis and Fourier analysis [9], short-
term Fourier transform (STFT) [10] are extracted the features of maximum, minimum, mean,
median, moment, asymmetry, kurtosis and standard deviation [13]. Extracted values in the
time-frequency domain require less signal processing time, but are difficult to use because
values change over time with wavelet transformations. To ensure that this principle is better
than others, it is necessary to carry out further experiments by specifying the problems
and the best possibilities of extracting data [55]. In the selected articles, in addition to the
features extracted in the time, frequency and temporal frequency domains, there are also
other domains or other features. For instance, articles [16,30,73] extracted functionalities
in the field of statistics. Signals are considered to result from a random process. This
includes features that describe the probability of random process distribution, such as
mean, variance, asymmetry, kurtosis and standard deviation, and signal coefficients of time
series, such as autoregression (AR), moving average (MA) and their combination (ARMA).
Vector features are also available [21,28,48,59]. In other articles, no signal features were
extracted, but raw signals were directly input into the AI algorithm [6,32].

In Figures 4–6, the number of publications containing the data features in the domains
of time, frequency, time frequency, raw data and other different features are inserted.
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In all three machining operations, signal features are extracted in the time domain.
Only in drilling are there more publications with raw data.
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4.5.3. Introduction and General Explanation of AI Methods

To manufacture a product in an industrial environment, you must go through different
machine tools with different cutting processes. This makes it clear that there are many
variables both in the external environment and in the internal environment of the machine,
and each process can be considered an end in itself. Therefore, the determination of the
wear of a tool with the offline method is too demanding, especially stopping production at
any time to check the tool. Therefore, modern tool wear measurement systems are based
on online monitoring. They identify process abnormalities and initiate corrective actions
with no human intervention. The sensors used to acquire the data provide the state of
wear of the tool instant by instant, and thus estimate the total wear over time and many
other characteristics of the cutting process [55]. Classifiers play a critical role in monitoring
the state of tools. They provide a decision system that uses all of the sensor signal data
features to predict tool wear states [66]. The features extracted in time domains, frequency
domains, time-frequency domains and other domains constitute the dataset to be inserted
into the decision algorithms [84]. With the rapid development of AI technology, many AI
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methods have been used to construct monitoring models [67]. Each algorithm or form of
AI used to forecast tool wear and RUL is evaluated by the accuracy of the prediction. Thus,
performance indicators have emerged that identify the extent to which AI is adapted to the
current experience.

In the 77 selected articles, there were many different methods of applying AI, such as
the artificial neural network (ANN), genetic algorithms (GA), Fuzzy Logic algorithms (FL),
the support vector machine (SVM), the Hidden Markov Model (HMM), Decision Tree (DT),
Random forest (RF), Adaptive neuro-fuzzy inference systems (ANFIS), Bayesian networks
(BN), K neighbor neighbor (KNN), analysis Principal Components (PCA), Convolutional
Network (CNN) Control Chat and other methods applied in a publication, which included
C-means clustering, relevance vector machine (RVM), extreme learning machine (ELM),
singular spectrum analysis SSA, KALMAN FILTER, conditional random field a linear chain
(CRF) and more.

4.6. Methods of AI Applications: ANN, GA, FL, SVM, HMM, DT, RF, ANFIS, BN, KNN, PCA,
CNN, C-Mean, RVM, ELM, SSA, KALMN FILTER, CRF

Artificial neural networks (ANNs), usually referred to simply as neural networks
(NNs), are computer systems inspired by the biological neural networks that make up the
animal brain. An ANN is based on a collection of connected units or nodes called artificial
neurons, which freely shape the neurons in a biological brain. Every connection, like
synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron
receives signals and then processes them and can signal the neurons that are connected. The
“signal” at a connection is an actual number, and the output of each neuron is calculated
from a nonlinear function of the sum of its inputs. The connections are called edges.
Neurons and edges generally have an adjustable weight as learning progresses. Weight
increases or decreases signal strength in a connection. Neurons can have a threshold in
which a signal is sent only if the aggregated signal crosses that threshold [85].

A genetic algorithm (GA) is a heuristic algorithm used to try and solve optimisation
problems for which no other effective algorithm of linear or polynomial complexity is
known. Typically, a genetic algorithm consists of: a finite population of individuals of size
M, representing candidate solutions to solve the problem; a function of adaptation, Fitness
call, which provides a measure of the individual’s ability to adapt to the environment.
It constitutes an estimate of the goodness of the solution and an indication of the most
suitable individuals for reproduction; from a series of operators who transform the current
population into the next; from a criterion of termination, determine when the algorithm
should stop; from a set of control parameters [85].

Vector Support Machines (SVM) are supervised learning models in combination with
learning algorithms for classification. Given a set of training examples, each of which is
labelled with the class to which it belongs between the two possible classes, a training
algorithm for SVM builds a model by assigning new positions in one of the two classes.
The result of the SVM model is a representation of instances as points in space, mapped
so that the examples belonging to the two different classes are clearly separated from the
widest possible space.

A hidden Markov pattern (HMM) is a Markov chain with states that are not directly
observable. More precisely, it works as follows: the chain has a certain number of states;
the states evolve according to a Markov chain; each state generates an event with a certain
probability distribution that only depends on the state; the event is observable but the
status is not. HMM can be used for Timeseries monitoring data [85].

Decision tree learning (DT) is a supervised learning approach used in statistics, data
mining and machine learning. In these tree structures, the leaves represent class labels
and the branches represent the junctions of the characteristics that lead to class labels.
Decision trees where the target variable can assume continuous values are called regression
trees [85].
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RF or random decision forests are a collective learning method for classification,
regression and other tasks that work by building a multitude of decision trees at the
time of formation. For classification tasks, exit from random forest is the class chosen
by most structures. For regression tasks, the average or average estimate for each tree is
returned [85].

A neuro-fuzzy adaptive inference system or network-based adaptive inference system
(ANFIS) is a type of artificial neural network based on the fuzzy Takagi-Sugeno inference
system. Because it incorporates both neural networks and the principles of fuzzy logic,
it has the potential to capture the benefits of both in one frame. Its inference system
corresponds to a set of fuzzy IF-THEN rules that have learning abilities to approximate
non-linear functions [85].

A Bayesian network (BN) is a probabilistic graph model that represents a set of
stochastic variables with their conditional dependencies using a direct acyclic graph (DAG).
Edges are dependency conditions. Nodes that are not linked represent conditionally
independent variables. Each node is associated with a probability function that takes
as input a particular set of values for the variables of the parent node and returns the
probability of the variable represented by the node.

The k-nearest neighbours algorithm, also known as KNN or k-NN, is a non-parametric
supervised learning classifier, which uses proximity to make classifications or predictions
about the clustering of a single data point [85].

Principal component analysis (PCA), is a technique to simplify the data used in
multivariate statistics. The technique aims to reduce the number of variables describing a
data set with less latent variables, limiting the loss of information as far as possible [85].

In machine learning, a convolutional neural network (CNN) is a type of feed-forward
artificial neural network in which the pattern of connectivity between neurons is inspired
by the organization of the animal visual cortex. A CNN typically has three types of layers:
a convolutive layer, a pooling layer and a fully connected layer. The aim of each layer is
different [85].

Fuzzy C-mean clustering is an algorithm where all data may belong to more than one
cluster. The elements of a cluster can be both similar and different. Measurements that
identify a cluster are distance, connectivity and intensity.

RVM is a machine learning technique that uses regression and classification. The RVM
has an identical functional form to the SVM, but provides a probabilistic classification.

SSA is a technique for analysing time series. It performs a singular value breakdown
of the trajectory matrix, obtained from the original time series, with later reconstruction of
the series.

The Kalman filter is an algorithm that predicts the status of a system from measured
data. Its operation is divided into two phases: the first phase makes a forecast on the state
of the system; the second phase refines the prediction of the state of the system.

CRF are a class of statistical models used in pattern recognition and more generally
in statistical learning. CRFs allow for the interaction of “neighbouring” variables to be
accounted for and are often used for sequential data.

Figure 7 contains the total number of publications per year containing artificial intelli-
gence algorithms.

It is clear that from 2010 to 2015 the average number of articles with AI was 4.83, while
the average of articles from 2016 to 2020 was 9.6. This points out that, in the last few years,
research on algorithms has been constantly increasing.

Figure 8 contains the total number of publications per year containing the type of
AI. It is obvious that the most used algorithms are ANN, SVM and Fuzzy. The other
publications all have the same number of applications in experiments. The most used
milling techniques are ANN and SVM. The most used technique in turning is the ANN.
In drilling, the experiments found were few and the techniques used were the GA and
the K-star. The part indicating others indicates algorithms used only once within the
publications. For this reason, having little meaning, they were labelled as other.
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4.6.1. AI Applications in Milling

In milling, there are many different methods of AI application. In Ref. [8], fully
connected neural networks (FCNN) and meta-learning models (MALM) were employed.
The former was used to predict tool wear and the latter was used to adapt the parameters
to the various cutting conditions in the chip removal process. Thus, by working together,
they can predict wear by automatically adapting to process variables from training data.
In Ref. [10], the authors used a CNN to analyse the spectrographic characteristics of the
audio signal as a decision model to predict instrument conditions of the collected audio
signals. In addition, this article also attempted to visualize the deep neural networks of
the proposed CNN model to identify the features chosen by the deep learning model for
predictions. It should be used to simplify and optimize the overall oversight model to
improve classification outcomes. Based on the distributed Gaussian ARTMAP (dGAM), an
online monitoring system was constructed by measuring wear using force signals from a
dynamometer. The principal feature of this method is that the distributed Gaussian function
is adopted to represent the relationship between the input vectors and the propagation
node. In addition, the distributed Gaussian probability density feature can simultaneously
represent each wear category of the tool using multiple nodes [15]. In Ref. [17], the goal
was to recognize tool wear by consolidating FBE and fuzzy C-means. First, the process
demodulated wavelets packages for force and vibration signals and efficiently extracted
FBE features. Finally, it created the fuzzy grouping of medium C for these characteristics as
a grader and determined the wear condition of the cutting tool. To examine the performance
of the clustering results, 2D mapping was performed for the PCA-based higher-dimensional
clustering space. Ellipsoid ARTMAP (EAM) is an adaptive resonance theory neural network
architecture that can successfully complete classification tasks using incremental learning.
EAM performs this task by summarizing input data tagged with hyperellipsoidal structures
(categories). One of the main properties of EAM, when using offline quick learning, is
that it perfectly learns its entire training after the end of the training. Depending on the
classification issues involved, this implies that offline EAM training may be subject to
excessive adjustment [19]. The wear monitoring system described in [20] used the CNN
array to predict tool wear by force signals. Adaptive Control (AC) was used in conjunction
with CNN for self-learning and self-adjustment to optimize the tool lifetime and improve
surface finish. Adaptive control allows you to automatically adjust the cutting parameters
to obtain the desired force. The RVM method used in tool wear prediction has characteristic
vectors that evaluate model construction through process parameters and performance
evaluation through monitoring signals. This is done for two reasons: the first is that
the raw monitoring signals cannot be directly taken as input signals, and second, the
parameters serve to improve the accuracy of the model [27]. In Ref. [33], the state of tool
wear was investigated through the ANN. The signals acquired were acceleration signals.
The working tool increases its wear and, consequently, its cutting force during the process.
This leads to an increase in the amplitude of the acceleration signal. With the ANN, it is
then possible to translate this signal into a forecast of tool wear. A new and a worn tool is
tested. Their performance is compared against actual and predicted labels of a supervised
classification algorithm. In this experiment, the results obtained confirmed the correct,
precise and accurate detection of the state of the tool. Ref. [34] showed the impact between
tool wear and the machined surface. For this relationship, new algorithm parameters were
introduced such as histogram variance, energy, gray average (GA), entropy (GLCM) and
diagonal momentum (GLCM). Histogram variance is the parameter that most influences
tool wear prediction results and is actually the most widely used. The Kalman filter is
used to link the acquired force signals to the histogram variance setting. This makes it
possible to obtain good results, particularly in the precision of the wear predictions of the
tools. Conditional Random Fields (CRFs) are a class of statistical modelling methods often
applied to pattern recognition and automation and used for structured prediction. While
a classifier predicts a label for a single sample without considering “nearby” samples, a
CRF can take context into consideration. To achieve this, the estimates are modelled as a
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graphical model, which represents the presence of dependencies between the estimates.
The type of graphic used varies according to the application. For example, in natural
language processing, “linear chain” CRFs are popular, where each prediction only depends
on its immediate neighbours. In image processing, the graphic generally links locations
to nearby and/or similar locations to ensure that they receive similar forecasts [35]. In
Ref. [42], extreme two-layer angular kernel learning (TAKELM) and binary differential
evolution (BDE) were used by analysing acoustic emission signals. The TAKELM algorithm
was used to characterize the state of tool wear during the machining process, while the
BDE was used to minimize tool wear prediction errors by choosing the best functionality
parameters. In Ref. [72], the Bayes classification algorithm was used to monitor the state of
tool wear for discrete and continuous cases. Force cues have been used in both direct and
continuous cases. In both cases, the wear of the tool flank was evaluated. This algorithm can
be advantageous because it can be applied to multiple sensors, such as those for vibrations
and noise, and is thus inexpensive from the point of view of computational calculation. In
Ref. [78], the authors used the HMM algorithm to define the state of wear of the tool and,
therefore, the RUL. A hidden Markov model (HMM) is a Markov chain in which the states
are not directly observable. More precisely: the chain has a certain number of tool wear
states; the wear states evolve according to a Markov chain and each state generates an event
with a certain probability distribution that only depends on the state. It is then possible
to observe the condition of tool wear. Figures 9–11 show the number of publications on
milling containing the type of AI, the type of signal used and the type of wear calculated. It
is clear that the most widely used type of AI is SVM and then ANN. The most extracted
signal type is shear force and then vibration. The most calculated wear type is VB and
then RUL. In Table A2 shows features, signal, AI methods and performances in milling.
“Appendix B”.
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• Analysis SVM in milling

By analysing the AI methods for milling, it can be determined that the most used is
the SVM [11,13,14,33,39,57,62–64,73].

Figure 12 shows that the most widely used tool wear calculation method is the VB
method, with eight publications [11,13,14,33,62–64,73]. The RUL was listed in two publica-
tions [39,57].



J. Manuf. Mater. Process. 2023, 7, 129 26 of 48J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 27 of 51 
 

 

 
Figure 12. Number of publications for SVM in milling containing the type of wear. 

 
Figure 13. Number of publications for SVM in milling containing the type of wear. 

Figure 12. Number of publications for SVM in milling containing the type of wear.

Figure 13 shows that the main signal extracted from the sensors is vibration in four
publications [33,57,63,64], and sound in four publications [13,57,62,73]. The cutting force
was found in two publications [14,39], such as the current one [11,39]. Finally, the AE was
found in one publication [57]. Power has not been used with SVM in milling.
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Figure 14 shows which domains, for milling, are extracted and the data from the sensors.
The most were in the time domain, with six publications [11,13,14,33,39,57,63]. Then, the
frequency domain followed, with five publications [11,13,14,39,57,63], the time-frequency
domain with two publications [13,39], other features with two publications [64,73], and both
raw data [62] and PCA data [13] with one publication.
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4.6.2. AI Applications in Turning

In Ref. [23], the short-term Fourier transform (STFT) was used to monitor tool wear,
which was a Fourier transform used to determine the sine frequency and phase content of
local sections of a signal as it changed over time. The signals acquired from the vibration
sensors were used. In practice, the procedure for calculating STFTs is to divide a longer
time signal into shorter segments of equal length and then separately calculate the Fourier
transform on each shorter segment. This reveals the Fourier spectrum on each shorter
segment. Typically, one plots the changing spectra as a function of time, known as a
spectrogram or a waterfall graph, as commonly used in Software Defined Radio (SDR)-
based spectrum displays. Full bandwidth displays, spanning the full range of an SDR,
commonly use fast Fourier transforms (FFT) with 224 dots on computers. In Ref. [24], the
ANFIS algorithm was used to predict the wear of a turning tool. The cutting parameters
monitored for the algorithm were the cutting speed, the feed rate and the depth of cut.
The signals were taken from a strain gauge sensor that extracts the cutting force and feed
from the turning process. The most influential parameter in predicting tool wear was the
feed force. In Ref. [28], the turning tool wear was evaluated on the turning of Inconel
718 material with three signal types; i.e., the cutting force, acoustic emission and vibration.
The PCA technique was used to reduce the characteristic parameters in the time, frequency
and time frequency domains. It significantly reduced the variables, together with the
NN network, providing excellent accuracy in predicting turning tool wear. To calculate
tool wear in the turning process, Ta-kagi-Sugeno-Kang fuzzy (TSK) can be used, which
accurately predicts tool wear with acoustic emission sensor (AE) signals [31]. In [36], the
fuzzy TSK was used to determine the wear of the turning tool by acquiring signals from
different sensors. In Ref. [59], the sensor signals were associated with the state of tool wear.
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This allows a very precise prediction and accuracy in predicting the turning tool wear.
Figures 15–17 show the number of publications on turning containing the type of AI, the
type of signal used and the type of wear calculated. It is clear that the most commonly
used AI type is ANN. The most extracted signal type is shear force, then vibration and AE.
The most calculated wear type is VB. In Table A3 shows features, signal, AI methods and
performances in turning. “Appendix C”.
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• Analysis ANN in turning

By analysing the AI methods for turning, it appears that the most widely used is the
ANN [21,28,36,59,68].

Figure 18 shows that the most widely used tool wear calculation method is the VB,
with five publications [21,28,36,59,68].
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Figure 19 shows that the main signal extracted by the sensors was the shear force
signal, in five publications [21,28,36,59,68], and the EA in four publications [21,28,59,68].
The vibration was found in found publications [21,28,59]. The sound, the current and the
power were not considered in the publications.
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Figure 20 shows in which domain data was extracted from sensors. The largest was
other domains with four publications [21,28,36,59]. The PCA technique follows, with
two publications [28,59], and the time domain, with one publication [68].
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4.6.3. AI Applications in Drilling

In drilling, AI is applied but not in the same way as in the other two technologies. The
k-mean algorithm aims to minimize the total intragroup variance; each group is identified
by a centroid or midpoint. The algorithm follows an iterative procedure: it initially creates
k partitions and either randomly assigns entry points to each partition or by using some
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heuristic information; it then computes the centroid of each group; it then builds a new
partition associating each entry point to the group the centroid is closest to it; finally, the
centroids for the new groups are recalculated, until the algorithm converges [9]. It is highly
valid for predicting the drilling tool wear. The coupled algorithms Levenberg Marquandt
(LM), Conjugate Gradient Descent (CGD) and Bayesian Inference (BI) have been used
to predict the flank wear of the tool. Initially, only the power signals were used because,
industrially, it is very economical. Then, the cutting force signals were also used to make the
result more accurate [29]. The flank wear of the tool is monitored by measuring the vibration
signals developed during the drilling process. Based on this data, the tool condition is
classified as worn or not worn, and also under severe or delicate operating conditions. The
vibration signals induced by the drilling were acquired using an accelerometer the output
of which was conditioned by a DAQ card. The K-star algorithm was used to classify the
extracted signals, obtaining an accuracy of 79.56% [49]. In [51], evolutionary algorithms
such as GA were used to optimize the based evolution of the optimal Radial Basis Function
Network (RBFN) architecture. The GA combined with the RBFN network allows good
results in predicting tool wear in drilling operations. Figures 21–23 show the number of
publications on turning containing the type of AI, the type of signal used and the type of
wear calculated. It is clear that the most commonly used AI type is ANN. The most extracted
signal type is shear force, then vibration and AE. The most calculated wear type is VB.
Figures 21–23 show the number of publications to contain the type of AI, the type of signal
used and the type of wear calculated. It is clear that the type of AI does not exist. All have
a value of 1. These are the GA, ill’RF and the K-star. The most extracted signal type is the
shear force, with three publications [9,29,51], then the power, with two publications [29,43]
and then the vibration [49], the current [43] and the AE [9] with one publication each. In all
publications, the calculated wear is VB [9,29,43,49,51]. For drilling, more experiments must
be carried out to obtain an idea of the future choices to be made, especially in the industrial
environment. In Table A4 shows features, signal, AI methods and performances in drilling.
“Appendix D”.
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4.6.4. Introduction of the Performance of an AI Algorithm

The performance of an AI algorithm indicates the accuracy of tool wear prediction.
They can be the variance R, which is a measure of the variability of a data distribution with
respect to the means; the covariance R2, which is a measure of the relationship between
two variables; the mean squared error (MSE), which is a measure of the distance between
the values predicted by a model and the actual values; its rooted variant (RMSE), which is
the MSE calculated as the square root; the mean absolute error (MAE), which is a measure
of the distance between the expected values and the actual values, calculated as average
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of the absolute errors; its percentage variant (MAPE), which is the MAE expressed as a
percentage of the actual values; the Pearson correlation index (PCC), which is an index that
expresses a possible linear relationship between two variables.

Analysing the publications, the performance indicators found most were the covari-
ance (R), the mean relative error (MRE), the variance (R2), the mean absolute error (MAE),
the mean squared error (RMSE), the Mean Absolute Percentage Error (MAPE), Pearson’s
Correlation Coefficient (PCC) and the Confidence Interval of Expected Results (CI). There
are also very particular ones, such as the spectrogram of the “Failure” tool, the salience
map of the “Failure” tool [10], the positivity rate (TP rate) and the false positive rate (FP
rate) [30,45,73]. All of these measures are used to evaluate the goodness of a prediction or
regression model.

Tables A2–A4 in “” describe the type of features extracted, the methods of AI used and
the performances of the experiment for all of the milling, turning and drilling publications.

Performance of an AI Algorithm in Milling, Turning and Drilling

The study in [10] showed that the CNN model demonstrated a significant improve-
ment in the predictive accuracy of 81% with hyperparametric adjustment of the objective
function. LDA and SVM. Publication [11] achieved almost 90% accuracy. Other DT, KNN,
BN and NN techniques have shown inferior accuracy to a maximum of 84.1%, 84.6%, 85%
and 85%. In [12], using the HMM algorithm, the mean performance precision value was
0.8234, which was close to 1. In this case, the mean absolute percentage error (MAPE)
was estimated using the confidence levels defined by the rule of three sigma (68%, 95%,
99.7%). The results were: MAPE = 25.05 for the 68% confidence level; MAPE = 18.37 for
the 95% confidence level; MAPE = 39.68 for the 99.7% confidence level. In [13], different
algorithms were used such as CART, RF, KNN and SVM with the extended convolutive
bounded component analysis (ECBCA) technique that was used to separate source signals
from the wavelet sub-band signals, or without this technique. The results were then also
evaluated with a different percentage of training data; i.e., 50%, 60%, 70% or 80%. The
results were as follows: CART overall precision without ECBCA was 95.28%, CART overall
precision with ECBCA was 96.96%; RF overall accuracy without ECBCA was 92.12%, RF
overall accuracy with ECBCA was 93.40%; KNN overall accuracy without ECBCA was
96.54%, KNN overall accuracy with ECBCA was 97.81%; SVM overall accuracy without
ECBCA was 96.74%, SVM overall accuracy with ECBCA was 98.47%. Overall RF accuracy
with the training dataset: 50% was 93.40%, 60% was 92.51, 70% was 94.05, 80% was 94.11%,
90% was 96.49%; CART overall accuracy with the training dataset: 50% was 96.96%, 60%
was 97.75, 70% was 97.37, 80% was 97.93%, 90% was 98.99%; KNN overall accuracy with
the training dataset: 50% was 97.81%, 60% was 97.97, 70% was 98.94, 80% was 98.85%,
90% was 98.45% was 98.45%; SVM overall accuracy with the training dataset: 50% was
98.47%, 60% was 98.22, 70% was 94.05, 80% was 98.11%, 90% was 98.55%; KNN overall
accuracy with the training dataset: 50% was 97.81%, 60% was 97.97, 70% was 98.94, 80%
was 98.85%, 90% was 98.45% was 98, 45%; SVM overall accuracy with the training dataset:
50% was 98.47%, 60% was 98.22, 70% was 94.05, 80% was 98.11%, 90% was 98.55%. In [16],
the ANN predictions for flank wear yielded a correlation coefficient (R) of 0.992, a mean
relative error (MRE) of 5.42% and a covariance (R2) of 0.996. In [18], Gaussian process
regression (GPR) was used to predict tool flank wear. The 95% confidence interval (CI)
was used to evaluate the performance of GPR. Using GPR with Kernel Principal Com-
ponent Analysis based on the Integrated Radial Basis Function (KPCA_IRBF), tool wear
prediction greatly improved. In [19], the average recognition rates of the original samples
after incremental learning of the EAM ART-MAP were higher than the FUZZY ARTMAP
(FAM), reaching 98.67% for the EAM, while it reached 89.67% for the FAM. The CNN model
was estimated to be 90% accurate [20]. Cases of uniform wear were correctly classified
for the majority of cases (68 predicted versus 66 actual). In [21], sensors were used that
evaluate cutting force torques, acoustic emission signals and acceleration torques. Tool
wear prediction results were obtained by using the cutting force pairs with the acoustic
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emission, using the acceleration torques together with the acoustic emission signals, and
then using the three signals together. The results were as follows: by merging the cutting
force pairs and characterizing vectors with the acoustic emission (AE) sensor signals, a
success rate (SR) of 92.2% was obtained for the NN; by combining the acceleration torques
and the vectors characterizing the acoustic emission (AE) sensor signals, a success rate
(SR) of 87.8% was obtained for the NN; by comprehensively merging all cutting forces,
torque characteristic vectors, acceleration torques and AE characteristic vectors, a success
rate of 98.9% was obtained for the NN. The study in [24] indicated the maximum and
minimum MAPE values with different cutting conditions to define the accuracy of the
ANFIS algorithm. The cutting conditions considered were the cutting speed, the depth
of cut and the feed rate. The MAPE values in the experiments were: Vc = 200 m/min,
DC = 1.6 mm, f = 0.25 mm/rev with a minimum MAPE of 0.48%, a maximum MAPE of
5.59% and an average MAPE of 2.30%. Experimental Vc = 250 m/min, DC = 1.2 mm,
f = 0.25 mm/rev with a minimum MAPE of 0.96%, a maximum MAPE of 14.29% and an
average MAPE of 5.08%. Experimental Vc = 300 m/min, DC = 0.8 mm, f = 0.25 mm/rev
with a minimum MAPE of 0%, a maximum MAPE of 19.64% and an average MAPE of
4.07%. In [27], the RVM algorithm using the integrated radial basis function based on
kernel principal component analysis (KPCA_IRBF) was evaluated through RMSE and PCC
performance. Experimental results showed that KPCA_IRBF could reduce the mean square
error (RMSE) of RVM by more than 30% and compress the mean width of CI by more than
90%. In [28], the PCA technique was used to reduce the characteristics of the sensor signals
and obtain a very good prediction of tool wear with the NN algorithm. By identifying the
seven main characteristics of the signals, i.e., the cutting forces in the x, y, z directions (Fx,
FY, Fz), the acoustic emission signal (AErms) and the accelerations in the x, y, z directions,
the success rate (SR) of tool state classification was between 79% and 98%. Considering only
the cutting force signals, the success rate was 92%. Considering only the three accelerations,
the success rate was 81%. Considering the torque and the three cutting forces, the success
rate was 93%. Considering the torque with the three accelerations, the success rate was
83%. The study in [30] used a K-star algorithm. A set of statistical characteristics derived
from vibration signals was the input of the algorithm. The classification was conducted
using two indicators called LP rates and FT rates. The TP rate indicates the true positive
value. Its value is between 0 and 1. The closer it is to 1, the better the prediction of tool
wear will be. FT rate indicates the false positive value. Its value ranges from 0 to 1. The
closer it is to 0, the better the prediction of tool wear will be. The K-star algorithm achieved
a classification accuracy of 78%. The study in [34] used the Kalman filter to predict the
accuracy of tool failures. The performance was measured by force signals through the
RMSE. It was observed that the RMSE decreased when force data were taken from the
measured signal equation. The study in [35] compared the HMM model and the CRF model.
The accuracy rate of the HMM was lower than the CRF model for each state of tool wear.
In [39], the RF algorithm was compared with SVR and the feedforward network NN. The
RF performed far better, with a score of 64.03 and an accuracy of 71%, compared to SVR and
the feedforward NN. The RMSE indicated prediction error decreases by 4% and 12% with
respect to SVR and the feedforward NN. In [43], the RF algorithm performance evaluation
method was based on four values: accuracy, ranging from 84% to 97.4%; R2, which was
0.74; the RMSE which was 5.11 microns; the MAE, which was 4.25 microns. A GAN-based
anomaly detection system was shown in [44] to be able to detect 90.56% of tool wear in a
TCM application using acoustic signals measured during the milling process. Furthermore,
the probability of a non-conforming tool being incorrectly classified as conforming was
shown to be reduced from 16.65% to 4.52% on the experimental dataset used. The study
in [45] used the K-star algorithm using vibratory signals. The K-star algorithm provided
a 96.5% overall classification accuracy. In [46], the proposed network (DCNN) achieved
100% accuracy in correctly detecting worn and failed tools. By classifying a new tool as
worn, the detection accuracy of worn and broken tools was 81%. In [49], vibration signals
built into the K-star algorithm were used. Classification of tool wear using the K star
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algorithm yielded an accuracy of 79.56%. The study in [51] showed a change in RBFN
architecture based on a genetic algorithm (GA). The change in the mean square test error
by changing the number of hidden units showed that the error decreases as the number
of nodes in the hidden layer increases, but tends to increase as the network architecture
is extended beyond a layer optimal. The optimum number of hidden nodes is 10 and the
associated test error is 2.0236%. In [52], a hybrid neural network (NN hybrid) incorporating
a CNN and an RNN was presented for the prediction of the tool state and machined surface
roughness based on measured power profiles. It could be seen that more than 90% and
82% test accuracy was achieved to identify the tool wear and surface roughness images,
respectively, and no overfitting was observed. RNN performance on surface roughness
prediction had a prediction accuracy of greater than 85%. The study in [53] used the
Gaussian ARTMAP (GAM) network with force signals. The hybrid learning-based GAM
classifier could realize learning new knowledge without forgetting the original knowledge.
The maximum value was 100% and the minimum accuracy was 89%. The study in [61]
used the SVR differential progression algorithm (DE-SVR) using force signals. The relative
errors of the VB value prediction accuracy in the stable phase of the sampling instrument
were more than 88%, while the RUL prediction accuracy of the stable phase was 88.5%.
In [62], the algorithm SVM was used to predict tool wear. The results clearly showed how
shape errors and tool life can be positively influenced by adjusting the feed rate as the flank
wear width increases. Considering the maximum shape error, the life could be extended
by 70% by reducing the feed rate by 10%. If a 50% feed rate reduction was tolerated, the
service life extension could reach 440%. In [63], the SVM algorithm was used to identify
TPIM transition points by inserting vibratory signals. It showed that it had more accurate
classification results and could reach a 90.8% classification rate. The classification rate for
the SVM model with no TPIM was 81.9%. Long-term memory modelling (LSTM) was
used [64] to predict tool wear. The results showed that the most accurate prediction model
is the two-level, eight-hidden-unit LSTM model that has a test RMSE value of 0.00475. The
training regression value was 0.99593. In [68], the ANN algorithm was used by inserting
vibration and acoustic emission signals. The ANN algorithm was between 73.65% and
87.78% accurate.

Table 7 shows the data of milling, turning and drilling performances. In the table, de-
pending on the algorithm and the sensor used, the performance data obtained are presented.

Table 7. Milling, turning and drilling performances.

Articles Signal A.I. Methods Performance Performance Data

[10] Sound CNN with SGD Predictive accuracy (1) CNN predictive accuracy 81%

[11] Current SVM, LDA; KNN,
NN, NB, DT Accuracy

(1) SVM accuaracy 90%
(2) LDA accuaracy 90%
(3) DT accuaracy 84.1%
(4) BN accuaracy 85%
(5) NN accuaracy 85%

[12] Cutting force, vibration
and acoustic emission HMM MAPE, Mean and

Accuracy

(1) HMM MAPE = 25.05 for
68% confidence level;

(2) HMM MAPE = 18.37 for
95% confidence level;

(3) HMM MAPE = 39.68 for
99.7% confidence level

[13] Sound
CART, RF, KNN, SVM

with EBCA and
without EBCA

Accuracy without EBCA
Accuracy with EBCA

Accuracy with training set
50–60–70–80%

(1) Accuracy obtained CART, RF,
KNN, SVM without EBCA about 94%

(2) Accuracy obtained CART, RF,
KNN, SVM with EBCA about 96%

(3) CART, RF, KNN, SVM:
- training set 50% accuracy from 93 to 95%
- training set 60% accuracy from 96 to 97%
- training set 70% accuracy from 97 to 98%
- training set 80% accuracy from 98 to 99%
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Table 7. Cont.

Articles Signal A.I. Methods Performance Performance Data

[16] Cutting force ANN R, MRE, R2
(1) ANN R 0.992,

(2) ANN MRE 5.42%,
(3) ANN R2 0.996

[19] Cutting force,vibration
EAM ARTMAP,

FUZZY ARTMAP
(FAM)

Averaging recognition rate (1) EAM averaging recognition rate 98.67%
(2) FAM averaging recognition rate 89.67%

[20] Cutting force CNN, AC

Predicted Rapid
initial wear,

Predicted Uniform wear,
Predicted Failure wear

Accuracy %

(1) CNN accuarcy 90%

[27] Cutting force RVM with KPCA-IRBF RMSE, CI_widht/CI_var

(1) KPCA_IRBF can reduce the mean
square error (RMSE) of RVM by

more than 30%.
(2) mean width of CI by more than 90%

[34] Cutting force Kalman filter RMSE
(1) RMSE decreases when force data

is taken from the measured signal
equation.

[35] Acoustic emission CRF and HMM Accuracy rate
(1) The accuracy rate of the HMM is
lower than the CRF model for each

state of tool wear

[39] Cutting force, current SVM, RF and
feedforrward NN

Score, RMSE
and Accuracy

(1) RF score 64.04
(2) RF accuaracy 71%

(3) RMSE indicating prediction
error decreases

by 4% and 12% with respect to SVR
and feedforward NN

Articles Signal A.I. Methods Performance Performance Data

[44] Sound GAN Accuracy,
non-conforming tool

(1) GAN accuracy 90.56%
(2) GAN non-confroming tool reduced

from 16.65% to 4.52%

[45] Vibration K-star
Positive rate (TP rate) and
False positive rate (FP rate)

and Accuracy
K-star accuracy 96.5 %

[46] Sound DCNN Accuracy DCNN accuracy from 81% to 100%

[52] Power
NN inconrporate CNN

and RNN
NN incorporate RNN

Accuracy
(1) NN (CNN and RNN) accuracy from

82% to 90%
(2) NN (RNN) accuracy 85%

[53] Cutting force ARTMAP (GAM) accuracy ARTMAP (GAM) accuracy from 89%
to 100%

[61] Cutting force DE-SVR Accuracy VB and
Acccuracy RUL

(1) DE-SVR accuracy VB 88%
(2) DE-SVR accuracy RUL 88.5%

[62] Sound SVM Maximum shape error SVM maximum shape error 70%

[63] Vibration SVM with TIPM
SVM without TIPM Accuracy (1) SVM with TIPM accuracy 90.8 %

(2) SVM with TIPM accuracy 81.9 %

[64] Vibration SVM RMSE and Accuracy (1) SVM RMSE 0.00475
(2) SVM Accuracy 99.6%

[18] Cutting force KPCA_IRBF CI (1) KPACA_IRBF CI 95%

[21]
Cutting force,

torque, vibration
acoustic emission

NN SR
(1) NN SR force + AE 92.2 %
(2) NN SR torque + AE 87.8%

(3) NN SR torque + force + AE 98.9%
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Table 7. Cont.

Articles Signal A.I. Methods Performance Performance Data

[24] Cutting force, vibration ANFIS algorithm
Minimum MAPE
Maximum MAPE
Average MAPE

In the ANFIS, MAPE depends on cutting
speed vc,

cutting diameter Dc and feed speed f.
(1) Vc 200 mm/min Dc 1.6 mm f

0.25 mm/rev Minimum MAPE 0,48%
Maximum MAPE 5.59%

Average MAPE 2.3 %
(2) Vc 250 mm/min Dc 1.2 mm f

0.25 mm/rev Minimum MAPE 0,96%
Maximum MAPE 14.29%

Average MAPE 5.08 %
(3) Vc 300 mm/min Dc 0.8 mm f

0.25 mm/rev Minimum MAPE 0%
Maximum MAPE 19.64%

Average MAPE 4.07 %

[28] Cutting force, vibration
and acoustic emission NN with PCA SR

(1) NN SR between 79% and 98%.
(2) NN Only cutting force signals SR 92%.

(3) NN Only the three accelerations SR 81%
(4) NN Torque and the three cutting forces

SR 93%
(5) NN Torque with the three accelerations

SR 83%

[30] Vibration K-star TP rate’ and ‘FP rate
define the accuracy (1) K-star accuracy 78%

[68] Vibration and emission
acoustic ANN Accuracy ANN accuracy from 73.65% to 87.78%

[43] Current and power RF Accuracy, R2, MAE,RMSE

RF accuracy from 84% to 97.4%
(1) R2 0.74

(2) RMSE 5.11
(3) MAE 4.25 microns

[49] Vibration K-star Accuracy (1) K-star accuracy 79.56%

[51] Cutting force RBFN with GA MSE and % MSE (1) RBFN MSE 2.0236%

5. Industrial Application and Future Trends of Research

Intelligent machining has enormous potential and is becoming one of the next-
generation precision manufacturing technologies, in line with the advancements in Industry
4.0 concepts [82]. Intelligent machining [82] has unique manufacturing advantages, likely
to result in: minimizing toolpaths and machining times; improvement of the surface finish
of the components; maximizing cutting tool life and cutting performance; machining of
complex geometrised components with greater precision and efficiency; self-learning and
performance improvement in the process; dynamic detection of the cutting process, chip
formation and interactions in the cutting zone.

Maximizing the lifetime of the cutting tool is critical in the industrial process. This
guarantees the realization of a product and of a work order. The methods discussed
so far for measuring tool life have been online measurement systems. The successful
application of an online measuring system in an industrial environment is a major challenge.
The efficiency and reliability of this system are evaluated based on the accuracy of tool
wear prediction, repeatability and durability for continuous production without human
intervention [55]. To ensure the sustainability, reliability and efficiency of an online tool life
measurement system in a manufacturing industry, it must have the following features [85]:

- economical, reliable and robust sensors because machines are obsolete after 20 years,
the sensors will therefore be used to increase the useful life of machine tools, which
may be incorporated into machine tools;

- data processing units should extract their own data with more accurate and precise
information, and thus, make algorithm prediction much more accurate;
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- develop automatic procedures for extracting relevant information from data process-
ing units. These procedures should also consider CNC units for machine tools.

The creation of distributed artificial intelligence is one example:

- it is necessary to identify the most appropriate AI algorithms to predict the wear of
turning, milling and drilling tools, particularly in industrial environments. These
environments are characterized by noise; real data is very complicated to filter and,
in many cases, for reasons pertaining to production time, the training and wear
forecast datasets are very small. This is why the algorithms to be developed need to
automatically adapt to industrial contexts;

- significantly faster, simpler and cheaper offline measurement techniques;
- outlier detection techniques, which are often carried out in industrial environments;
- new methodologies or algorithms for optimising parameter adjustment without the

assistance of cutting process experts.

By ensuring the above characteristics, production downtime due to cutting tool wear,
which accounts for 75% of the total production downtime, would be considerably re-
duced [10]. Making manufacturing smart is therefore the key to the integration of machine
tools, sensors, AI and analytical equipment. Moving from the current production order to
smart manufacturing will free up high-quality products, greatly accelerating production
processes [85].

The industrial sectors for these technologies are aerospace and automotive. From
the identified publications, it is understood that it occurs in these sectors because they
are technologically very advanced and have the possibility of carrying out research even
during the normal course of production.

6. Results and Conclusions Compared with Recent Reviews
6.1. Result Review

The objective set at the beginning of the review asked which online measurement
methods used in the detection of tool wear or residual tool life (RUL); online measurement
systems are compared to offline measurement systems within the publications. Which
offline measurement methods are compared with online measurement methods; online and
offline measurement experiments use some cutting parameters, some machine tools and
some tools. In the publications identified, which cutting parameters are used, including the
turning, milling and drilling machine tools used; the experiments take place by working
certain metallic materials using milling, drilling and turning machine tools. Which metallic
materials are used; to create an online measuring system, it is necessary to acquire signals
such as vibration signals, energetic signals, power signals, torque signals and identified
signals. What are the devices or sensors capable of detecting and interpreting these signals
in milling, drilling and turning processes; signals have certain physical characteristics, such
as the maximum or minimum of the signal. What are the features that can be extracted
in the time domain, frequency domain and time-frequency domain; to predict tool wear,
Artificial Intelligence (AI) algorithms must be used that use certain AI techniques to predict
it. Therefore, which AI algorithms predict tool wear; each AI algorithm is categorized by
one performance. Performance determines the algorithm’s success. Thus, what types of
performance are identified in the various publications; finally, the results obtained in the
various experiments can be used in industry. Online measurement systems are suitable for
use in industrial environments.

By answering the questions asked at the beginning of the study, we can conclude that
the final results of the review indicate:

1. A total of 77 online and offline measurement publications were identified, as shown in
Table 1. The common purpose of the publications was to compare the offline tool wear
data obtained with the online tool wear data. Comparison between the two methods
of measurement was the essential requirement. Without this, other publications were
not considered. The most widely used measurement methods to compare online
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measurement forecasts were digital microscopes, optical microscopes, laser scanning
microscopes, 3D digital microscopes, video measuring systems, profile projectors and
electron scanning microscopes (SEM). The most commonly used online measurement
methods in research were ANN, GA, FL, SVM, HMM, DT, RF and ANFIS, with the
use of other algorithms such as BN, KNN, PCA, CNN, C-mean, RVM, ELM, SSA,
KALMN FILTER and CRF. Specifying the algorithms mentioned in the milling and
turning processes, they were all used in a heterogeneous way, while in the drilling
processes, the algorithms K-means, K-star, RF and GA were used;

2. The most used cutting parameters in milling machining were the spindle speed,
cutting depth and feed; in turning machining, the cutting speed, cutting depth and
feed; in drilling machining, all cutting parameters are considered; i.e., cutting speed,
spindle speed, depth of cut, feed and cutting diameter. Lubrication was only identified
in one publication;

3. For the most commonly used tools for milling, they were insert and hard metal cutters;
for turning, the CNMG insert; and for drilling, high-speed steel bits;

4. The most common sensors were dynamometers, used to obtain the cutting force
signal, and then accelerometers or vibration sensors, and finally, acoustic emission
sensors. As previously described, research needs to focus on low-cost, wireless and
reliable sensors to better detect signals and ensure the reliability of the data acquisition
process. For example, machine signals such as power and current are less used, but
should be the most commercially attractive because they are far less expensive;

5. Most of the extracted features were in the time and frequency domain. The main
characteristics extracted were: mean in the time domain, standard deviation in the
time domain, kurtosis in the time domain, the root mean square (RMS) in the time
domain, Fast Fourier Transform (FFT) in the time domain, variance in the time do-
main, skewness in the time domain, peak in the time domain, maximum in the time
domain, mean in the frequency domain, skewness in the frequency domain, peak
value in the frequency domain, variance value in the frequency domain, kurtosis
in the frequency domain, the root mean square ratio in the frequency domain and
centroid in the frequency domain. The time-frequency domain was the least used but
might ensure better results. When multiple sensors were used, the data processing of
the sensor fusion signal was performed through principal component analysis (PCA)
to reduce the high dimensionality of the sensor data and the extraction of meaningful
characteristics of the signal to be used for the recognition of models aimed at the
decision-making process on the state of wear of the tool;

6. The intelligence techniques used to forecast tool wear were numerous and varied.
Each identified tool wear with great accuracy and precision. The key was that the in-
telligence training dataset was as complete as possible. Even leaving data considered
uninteresting might distort the forecast result. The performance of artificial intelli-
gence determined whether the predictive algorithm used properly works. Analysing
the publications, the most common performance indicators were covariance (R), mean
relative error (MRE), variance (R2), mean absolute error (MAE), mean squared error
(RMSE), the Mean Absolute Percentage Error (MAPE), Pearson’s Correlation Coeffi-
cient (PCC), and Confidence Interval of Expected Results (CI). There were also very
specific ones, such as the spectrogram of the “Failure” tool, the salience map of the
“Failure” tool, the positivity rate (TP rate) and the false positive rate (FP rate).

7. A very important fact is that the accuracy of the algorithms used in the identified
publications varied from 84% to 100% when it came to a tool the wear of which is
already known. On the other hand, when the wear was unknown because the tool
was new, the precision dropped to around 73%.

6.2. Conclusions Compared with Recent Reviews

Over the past three years, research has conducted an in-depth analysis of tool wear.
The research results from Industry 4.0 have been tested in industrial environments. The
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specific characteristics of an industrial environment identify, as fundamental rules, the
reduction of costs, the quality of the product and the improvement in the time life of tools
and machine tools.

The research, by precisely analysing the industrial environment, identified the fun-
damental points of the integration of 4.0 techniques for the analysis of tool wear in chip
removal. The main areas of research were:

- Tool wear. The reviewed articles almost exclusively studied VB wear. ISO 3685
indicates that the VB value is 0.3 mm. In industrial environments, every process is
different and is made using different types of tools. Some tools have a maximum wear
of 0.1 mm, while others have a maximum wear of 0.4 mm. ISO 3685 should be restated
or adapted. Numerous experiments should be carried out in industrial environments.
They will need to be classified on a common basis in order to be compared. Mapping
will have to be constructed that will have the tools, the machine tools, the cutting
parameters, the materials processed and the machining operations as input parameters
and the measurement in millimetres of the tool wear as output parameters; Types
of tool wear. Other techniques for evaluating wear should be studied, such as RUL,
surface roughness, dimensional tolerances and residual stresses [84–86];

- Data. The amount of data extracted from sensors used in the industrial environment
is extremely large. This refers specifically to big data. Researchers will have to use
continuously storing and analyzing data, using the cloud the cloud. Introducing a
big data shopfloor was suggested in one publication. The data obtained in industrial
environments are very noisy with different characteristics, such as very worn tools
and broken tools, and with small datasets for the short duration of the machining
operation. The data is thus highly skewed and dispersed. Balancing techniques such as
SMOTE (Synthetic Minority Oversampling Technique) will be examined and analysed.
To reduce the amount of data obtained from industrial sensors, the technique of
regression to granular labelled data has been introduced with deep learning, obtaining
synthetic data on a smaller time scale. Then, through second-order regression on the
wear curve, the synthetic data can be segmented into smaller partitions [84–86];

- Sensors. The dynamometer was the most common sensor in the search. The mea-
sured signal is the cutting force and related quantities such as power, torque, dis-
tance/displacement, and strain. Problems pertaining to the force sensor include the
cost and the pervasive presence in the machine tool. To solve the cost problem, in-
creasingly less expensive and high-performance sensors must be built. To resolve the
issue of invasive presence, the cutting force data could be obtained from the spindle
motor current. This solution is highly relevant for small businesses where costs have
a larger impact on choices. Other sensors such as accelerometers, acoustic emission
sensors and microphones were also used. The solution for better tool wear calculation
is to use several sensors together. However, this implies an increase in costs and an
invasive presence [84–86].

- Artificial intelligence algorithms. The AI algorithms employed, analysed in the articles,
were very different. Their characteristics were different. There are still too many
unknowns in the nature and use of algorithms to determine a perfect result. However,
the performance of the algorithms was very good, with maximum accuracy values of
96–97%. Identifying a perfect algorithm for a machining operation is impossible. The
research will have to identify the best algorithms for industrial environments according
to the machining operation, the tools, the machine tools, the cutting parameters, the
sensors and the types and characteristics of the data. A mapping of the algorithms
should be created that will have the features described as input and the performance
as output. The most used algorithms in milling are: ANNs, with limitations in the
extensive optimization procedure of their parameters; SVM, limited to digesting huge
datasets; the DP, with accurate labelling of big data collected under different operating
conditions with supervised and unsupervised learning. The DP also uses the transfer
learning (TL) approach, i.e., the adaptation of knowledge for one task to another
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related task, and the CNN with supervised learning [84]. In drilling and turning, FL,
such as decision trees, are simple techniques that are well suited to the dispersive
nature of tool wear [84–86].

In conclusion, it is possible to direct research to design, build and conduct experiments
that create general maps of the calculation of wear from the data obtained from sensors
and general algorithms depending on the machining operations, the cutting parameters,
the tools, the machine tools and the machined materials.

Maps should be easy to read and interpret to ensure that an experienced person is not
necessarily required during the experiment.
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Appendix A

Table A1. Checklist review.

Abstract

Introduction 1

Objectives Provide an answer to your research

Research Question Provide an explicit statement of the question(s) the review
will address

Methods Of
Research Level,
Research’s Item
And Research’s
Number Of
Published
Articles Found

2

Eligibility Criteria
Search Strategy 2.1

Specify the study characteristics (study design, setting, time
frame) and report characteristics (such as years considered,
language, publication status) to be used as criteria for
eligibility for the review.
Present draft of search strategy to be used for at least one
electronic database, including planned limits, such that it
could be repeated

Selection Of Offline And Online Publications
And Related Data Extraction From
The Publications

3

Results Of Research 4

Introduction Selection and Inclusion of
Publications 4.1 It describes which articles were included

General And Essential Requirement Of
Machining Operations, Number Of Articles,
Type Of Wear, Type Of Machine And Type
Of Material

4.2 It describes the essential and general requirements of the
articles identified and selected
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Table A1. Cont.

Abstract

Introduction Methods of Measurement 4.3
Describes in general the online and offline
measurement systems.
4.3.1 Offline measurement 4.3.2 Measurement online

Type of Sensors and How They are used in
research Experiments 4.4

Describes the signal that the dedicated sensor detects.
4.4.1 Cutting Force sensors 4.4.2 Vibration sensors 4.4.3 AE
Emission Acoustic sensors 4.4.4 Sound sensors 4.4.5 Current
and power sensors

Features Of Signal, AI Methods
And Performances 4.5

It describes the features extracted from the signals, the AI
methods to predict the tool wear and the performances of
the algorithms.
4.5.1 Introduction of Features Sensor Signal 4.5.2 Features
sensor signal in different domani: Time domain—Frequency
domain—Time Frequency domain—Other 4.5.3
Introduction and General Explanation of AI methods
Methods of AI applications: ANN, GA, FL, SVM, HMM, DT,
RF, ANFIS, BN, KNN, PCA, CNN, C-mean, RVM, ELM,
SSA, KALMN FILTER, CRF AI applications in milling.
Analyse SVM in milling. AI applications in turning Analysis
ANN in turning AI applications in drilling 4.5.4
Performances 4.5.4 Introduction of the Performance of an
AI algorithm
Performance of an AI algorithm in milling, turning
and drilling

Industrial Application And Future Trends
Of Research 5

Results And Conclusion Compared With
Recent Reviews 6 6.1 Result review 6.2 Conclusions compared with

recent reviews

Appendix B

Table A2. Features, signal, AI methods and performances in milling.

Domain

Articles Time Frequency Time-
Frequency Pca/Kpca Signal A.I. Methods Performance

[8] x x x
Cutting

force, power
and current

FCNN
with MAML Prediction error

[10] x Sound CNN with SGD Predictive accuracy

[11] x x Current SVM, LDA; KNN,
NN, NB, DT Accuaracy.

[12] different feature

Cutting
force, vibration

and acoustic
emission

HMM MAPE, Mean and Accuracy

[13] x x Sound

CART, RF,
KNN, SVM

with EBCA and
without EBCA

accuracy with training set
50–60–70–80%

[14] x x Cutting force RVM, SVM Accuracy

[15] x x Cutting force dGAM k-fold cross and accuracy

[16] statistical feature Cutting force ANN R, MRE, R2
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Table A2. Cont.

Domain

Articles Time Frequency Time-
Frequency Pca/Kpca Signal A.I. Methods Performance

[17] x x Cutting
force, vibration FCM FBE

[19] x x x Cutting
force, vibration

EAM ARTMAP,
FUZZY ARTMAP

(FAM)
averaging recognition rate

[20] images for force Cutting force CNN, AC

Predicted Rapid
initial wear,

Predicted Uniform wear,
Predicted Failure wear

Accuracy %

[22] different feature

Cutting
force, vibration

and
acoustic emission

SSAE Average accuracy

[25] x x x Cutting
force, vibration PGGM RMSE, MAE

[27] x x x x Cutting force RVM with
KPCA-IRBF

RMSE, PCC,
CI_widht/CI_var

[32] raw data Cutting force CNN+BILSTM and
CNN+BIGRU MAE, RMSE

[33] x Vibration ANN, SVM
and KNN Score, recall and precision

[34] different feature Cutting force Kalman filter RMSE

[35] different feature Acoustic emission CRF and HMM accuracy rate

[37] x Power R2

[38] feature mapping x Power and current BP formula tool life predicting

[39] x x x Cutting
force, current

SVM, RF and
feedforrward NN Score, RMSE and Accuracy

[41] x x Vibration, acoustic
emission, current DBILSTM MAE and RMSE

[42] x x
Cutting force,

vibration
and sound

TAKELM, BDE MAE, MAPE, RMSE

[44] x Sound GAN accuracy,
non-confroming tool

[45] x Vibration K-star
positive rate (TP rate) and
false positive rate (FP rate)

and accuracy

[46] x Sound DCNN accuracy

[47] x x x Cutting
force, vibration

SVR, CNN, LSTM,
GRU RMSE and MAE

[48] feature vector Sound HMM SR

[50] x x x x Cutting
force, vibration PF, AR-PF, SVR-PF RMSE

[52] images feature Power

NN inconrporate
CNN and RNN

NN
incorporate RNN

accuracy

[53] harmonic feature Cutting force ARTMAP (GAM) accuracy

[54] raw data Power Kalman filter RMSE, average
percent error

[56] x x
Vibration and

emission
acoustic

LR, DF, BLR,
DT, NN RMSE, RelSE and R2
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Table A2. Cont.

Domain

Articles Time Frequency Time-
Frequency Pca/Kpca Signal A.I. Methods Performance

[57] x x Vibration, emission
acoustic and sound BP, SVM, ANFIS RMSE, COV and R2

[58] x x x x Cutting
force, vibration

KPCA, LLE,
ISOMAP, mRMR

RMSE, PCC, MAE
and MAPE

[60] Feature based fusion Cutting force VARX-L, SVR,
RF, XGBOOST NRMSE

[61] x x x Cutting force DE-SVR Accuracy VB and
Acccuracy RUL

[62] raw data Sound SVM maximum shape error

[63] x x Vibration SVM with TIPM
SVM without TIPM accuracy

[64] holder exponent feature Vibration SVM RMSE and accuracy

[65] raw data Specific
Cutting Forces DNN, LR R2 and RMSE

[71] force and vibration feature Cutting
force, vibration

ELM, SW-ELM,
ESN R2

[72] x x Cutting force NB R2

[73] DWT features, EMD features,
statistical features Sound SVM, ANN,

NB, K-star
true positive rate (TP rate)
false positive rate (FP rate)

[74] energy feature vector Cutting
force, current CHMM accuracy

[75] raw data Vibration
and current R2

[76] x x x Vibration NFN, BP, RBFN MSE, MAPE and R2

[77] harmonic feature Cutting force ARTMAP Incremental learning

[78] raw data

Cutting force,
vibration

and
emission acoustic

HMM MSE, accuracy

[81] x x x

Cutting force,
vibration

and
emission acoustic

GA with KELM R2, RMSE

Appendix C

Table A3. Features, signal, AI methods and performances in turning.

DOMAIN

Articles Time Frequency Time-
Frequency Pca/Kpca Signal Neural

Network Performance

[18] x x x x Cutting force KPCA_IRBF
GPR model,
MAE, RMSE,

MAPE, PCC, CI

[21] feature vector
Cutting force,

torque, vibration
acoustic emission

NN SR

[23] x x Vibration signal
TBTCD, FCM

Classifier,
Lasso classifier

recognition
accuracy

[24] x Cutting force, vibration ANFIS
algorithm MAPE
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Table A3. Cont.

DOMAIN

Articles Time Frequency Time-
Frequency Pca/Kpca Signal Neural

Network Performance

[26] x x Cutting force, vibration GUI

Different between
measured
wear and

calculated wear

[28] feature vector x Cutting force, vibration
and acoustic emission NN with PCA SR

[30] statistical feature Vibration K-star
TP rate’ and

‘FP rate
define the accuracy

[31] raw data Acoustic emission TSK RMSE

[36] different feature Cutting force
TSK, NN,
Mandami

FL, NF
RMSE and MAX

[40] x x x Vibration and power FBNF R2 and RMSE

[59] Sensorial features, feature pattern vector. x Cutting force, vibration
and emission acoustic NN, FFBP

Consumed
tool life%

average error %

[68] x Vibration and emission
acoustic ANN Accuracy

[70] raw data Cuttin force and
emission acoustic

DENFIS,
TWNFIS,
ANFIS

SSE, NSSE, FPE,
ENV, SBC,
TAE and

average error

[79] x Vibration, emission
acoustic and current

proportional
hazard model

logarithmic
means and
logarithmic

standard
deviations

[80] x x x Cutting force, vibration
and emission acoustic

Decision-
making

algorithm
R2, RMSE

Appendix D

Table A4. Features, signal, AI methods and performances in drilling.

DOMAIN

Articles Time Frequency Time-
Frequency Pca/Kpca Signal Neural

Network Performance

[9] x
Cutting force,

acoustic
emission

K-means Sum
Squared Error

[29] different feature Cutting force
and power

LM, CGD
and BI MSE and the R2

[43] raw data Current
and power RF accuracy, R2,

MAE,RMSE

[49] x Vibration K-star accuracy

[51] raw data Cutting force RBFN with
GA MSE and % MSE
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