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Abstract
This paper proposes an online evolutive procedure to optimize the Material Removal Rate in a turning process considering
a stochastic constraint. The usual industrial approach in finishing operations is to change the tool insert at the end of each
machining feature to avoid defective parts. Consequently, all parts are produced at highly conservative conditions (low levels
of feed and speed), and therefore, at low productivity. In this work, a framework to estimate the stochastic constraint of tool
wear during the production of a batch is proposed. A simulation campaign was carried out to evaluate the performances of
the proposed procedure. The results showed that it was possible to improve the Material Removal Rate during the production
of the batch and keeping the probability of defective parts under a desired level.

Keywords Tool wear · Stochastic constraint · Machining · Optimization

Introduction

Superalloys are heat resistant alloys of nickel, iron–nickel
and cobalt which frequently operate at temperatures exceed-
ing 550 °C. They exhibit high strength, good fatigue and
creep resistance, good corrosion resistance and the ability to
operate at elevated temperatures for a long time.

Unfortunately, the characteristics that convey Superalloys
good high-temperature materials are responsible for their
poormachinability and, consequently, their machining is still
a challenge, see the works by Devillez et al. (2007), Schorník
(2015) and Zhu et al. (2013) to cite a few. As for all mate-
rials, the tool wear rate depends on the cutting parameters;
for turning they are cutting speed, feed rate and depth of cut.
The machining production time also depends on the cutting
parameters and practitioners select them balancing the tool
change time,which depends on the number of tools necessary
to complete a batch, with themachining time, which depends
on the cutting parameters. As a matter of fact, by increasing
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the Material Removal Rate MRR, which is roughly the prod-
uct of cutting speed, feed rate and depth of cut, the number of
tools increases, and the machining time decreases, creating
the conditions for the existence of an optimal solution.

A more structured approach is to define an optimization
problem characterized by an objective function depending
on the cutting parameters (machining cost or machining time
are the two classical objective functions; the profit rate is also
proposed, but rarely used), and some associated constraints
(e.g. power, deformation, roughness etc.).

On this topic many research papers were published since
the Taylor’s ASME seminal paper in the early twentieth cen-
tury (Taylor 1907). The published papers differ in many
respects (for brevity, only some papers are mentioned):

• the technique used (analytical optimization or heuristic
optimizations such GA or PSO) (Ganesan et al. 2011;
Zainal et al. 2016);

• the framework considered: statistical or deterministic opti-
mization (Rao 2009);

• the constraints: considered or not considered (Venkata Rao
2016; Venkata Rao and Pawar 2010; Zhang et al. 2006);

• the specific machining operation with its specific process
parameters (Venkata Rao and Pawar 2010; Costa et al.
2011);

• the production framework considered: objective function,
batch size, cost and time constant parameters (Yildiz 2013;
Klocke et al. 2012).
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However, the above-mentioned techniques often appearmore
as mathematical exercises than effective industrial methods
and their diffusion at the shop floor is limited to the simplest
cases.

As amatter of fact, only unconstrained optimization prob-
lems with a single decision variable (usually the cutting
speed) are proposed by tool sellers and used in real industrial
cases. Moreover, to our best knowledge the published papers
assume that the relationship between the tool wear rate and
the cutting parameters is perfectly known. However, this is a
condition which is scarcely found in practice if we exclude
the most common machining operations and part materials.
In literature the prediction of the tool wear has been widely
investigated, for example inWang andCui (2013),Wang et al.
(2014) and D’Addona et al. (2017). However, the approach
used in these works employs large dataset to train neural net-
works. As a result, these techniques cannot be applied to real
industrial cases.

For Superalloys it is difficult to find the relationship which
links the tool wear rate with cutting parameters since the
cost of the material is high, and the batch size is usually
moderate-to-small, a preliminary experimentation to esti-
mate the tool wear rate relationship is not a reasonable
industrial option.

The objective of the present work is to propose an evolu-
tive online minimization of the machining time having as a
constraint the probability of not exceeding a maximum tool
wear level. The proposed approach does not require the a pri-
ori knowledge of the relationship linking the tool wear rate to
the cutting parameters aswe propose to estimate this relation-
ship using an empirical model fitted during the machining of
the batch.

In this paper we propose a new procedure to carry out an
online optimization of cutting conditions in a turning opera-
tion without any knowledge about the tool wear function. In
the optimization problem the objective function is the MRR
and a stochastic constraint is considered since we want to
maintain the probability of producing defective parts under
a desired level.

The real case motivating this work could not be solved
through physical experimentation due to time and cost con-
straints. So, to validate the proposed procedure, a simulation
campaign was carried out based on a simplified tool wear
model. This simplified case was used to sample tool wear
values at different feed and speed during the simulation. In
Fig. 1, the paper framework is presented.

The paper is organized as follows:

• In “Problem statement” section, a detailed problem state-
ment is given based on the motivating industrial case;

• In “The optimization problem” section, the optimization
problem is described;

• In “Proposed evolutive online methodology” section, the
proposed evolutive on line procedure is presented and dis-
cussed;

• In “Procedure validation section, the proposed procedure
is validated with a simulation campaign using a real tool
wear function obtained through an experimental campaign
(which is described in “Appendix A”). Later, a sensitivity
analysis is performed, and the results are discussed.

• Eventually, in “Conclusions and future developments” sec-
tion, the conclusions and future works are discussed.

Problem statement

The aeronautic industry growth imposes a deep revision of
the design and management processes in accordance with
the continuous decrease of profit margins. For this reason,
cost saving methods are applied more and more frequently.
Moreover, in this sector, hard to cut materials such as Nickel
superalloys are commonly used, and parts are produced in
moderate—to–small batches.

In the present work, the turning operation of a generic
aero-engine component is proposed as the motivating prob-
lem and its production is characterized by the above-
mentioned criticalities.

A simplified example of these components is shown in
Fig. 2a. As shown in the Fig. 2, the overall cutting process
is split into simpler operations called features (Fig. 2b) with
a diameter whose size can vary from large (even larger than
400 mm) to small (approximately 100 mm).

For each feature, a process set is defined: tool type, cutting
speed (from now on speed), feed rate (from now on feed)
and tool path. The section of the removed material instantly
changes due to the complex shape of the final part (Fig. 2c).

It is important to remark that each feature must be
machined without interruptions. A tool change during a fea-
ture execution is not allowed, since cut interruptions can
cause material alteration thus leading to discard the part. At
the end of a feature, the tool should not exceed a certain value
set in advance. The tool wear in the industrial context con-
sidered is the flank wear VB, it was measured according to
ISO 3685 and its maximum value was set at 0.3 mm.

Wehave empirically observed that quite often the removed
tool inserts show a rather low wear level. These empirical
observations convinced us to search for a method to usemore
efficiently the tool inserts. In particular, it could be possible
to set higher values for the cutting parameters reducing the
processing time and the production cost and satisfying the
tool wear constraint.

The goal of this paper is to propose an evolutive online
method to minimize the machining time for each feature,
with a constraint on the maximum allowable flank wear VB
on the tool insert.
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Fig. 1 The framework of the
present paper

Fig. 2 A 3D view of a typical
industrial component geometry
(a) description of the particular
features to be realized (b) for
comparison with the complex
shape of the part (c)

The optimization problem could be easily solved if the
relationship between the VB and the cutting parameters were
known (“Appendix B”). Unfortunately, this relationship is
not known in our case.

As previously stated, the estimate of the VB relationship
cannot be carried out on the actual industrial components
before the start of production for the following two reasons:

(A) Due to the complex geometry of each feature and the
complex shape of the removed volume within the same

feature (Fig. 1c), the tool works in continuously vari-
able instantaneous chip section (even if it maintains
constant values of speed and feed). Therefore, a correct
estimate of the relationship between tool wear and cut-
ting parameters could be obtained only for each cutting
path which is specific to each single feature.

(B) To analyse the Wear function for speed and feed val-
ues different from those used in the industrial certified
process, it would be necessary to use a costly large
instrumented Machine tool normally used for the ordi-
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nary production, and also to make Tool Wear tests on
real industrial components. The real industrial compo-
nents probably should be scrapped after

The experimentation and, due to their high value, this even-
tuality cannot be considered.

The high number of features per component, the cost con-
siderations previously stressed, the need to fit the relationship
between the VB and the cutting parameters for each fea-
ture cutting path involve the practical impossibility to use an
experimental approach with the real industrial components
before the production of the batch.

Even if in literature several authors studied the effects of
the cutting parameters on process performances and devel-
oped different optimization strategies, none of them, as far as
we know, tried to minimize the machining time by using the
information acquired online, from part to part, considering
the risk of exceeding a defined value of the tool wear.

The idea proposed in this work is an evolutive online opti-
mization methodology whereby:

• After a real feature machining, a dedicated system or the
operatormeasures theVB (this is the actual industrial prac-
tice to assess the tool wear level);

• The VB information is used to estimate a tool wear model;
• A set of decision rules selects a new set of cutting con-
ditions, and the new parameter set is used to machine the
next component until the batch is completed.

The proposed procedure is based on the well-known Repose
Surface Methodology proposed by Box and Wilson (1992).
In its original form, RSM solved on-line and unconstrained
optimization problems with an unknown stochastic objec-
tive function that could be measured through well-designed
experiments. Readers interested in this method can refer to
Myers et al. (2009) and Del Castillo (2007). In our case the
objective function is deterministic, but a stochastic constraint
was considered. As far as we know, this type of problems has
not been solved yet. The unique related paper is by Angün
et al. (2009) where the topic of the problem was simula-
tion experiments. As a consequence, the stochastic constraint
could be estimated through sampling techniques and not
through real experiments.

The optimization problem

In cutting condition optimization, common objective func-
tions are: the machining time per part, the machining cost
per part and the profit rate per part. The first two objective
functions are the most popular ones; the third one is rarely
implemented since it requires the definition of the revenue

associated with the single machining operation, therefore we
shall not consider it.

The objective functions “cost” or “time” share the same
function structure and are the sum of three terms.

• The first term does not depend on the cutting parameters
and it is of no interest in the optimization.

• The second term is the machining time (or cutting con-
tact time) which is the volume of material to be removed
divided by the material removal rate MRR. If we want to
consider themachining cost, wemustmultiply themachin-
ing time by the constant hourly machine cost.

• The third term is the time to change the insert and it
depends on the number of times we must change the worn
insert to complete the batch. In machining time optimiza-
tion problem, this number must be multiplied by the tool
change time. Inmachining cost optimization,wemust con-
sider the cost of the insert. It could be useful to remind that
the number of times we change the insert depends on the
tool life which depends on the MRR.

If we increase the material removal rate the second term
decreases, but the third term increases (the tool life decreases)
and the conditions for a possible optimum are realized. The
interested reader can consult a standard manufacturing book
(Kalpakjian and Schmidt 2001; Davim 2008) for further
details. However, our problem has a distinctive character-
istic to consider since the tool insert is changed every time
we complete the machining of a feature. This implies that the
third term vanishes in the objective function formulation.

The Objective functions becomes:

Machining time

� C +
Material volume

MRR
Machining time

� C∗ + Hourly machine cost × Material volume

MRR

It is easy to see that the minimization of these objec-
tive functions is equivalent to the maximization of the MRR
which is roughly proportional to the product of the cutting
parameters.

Before describing our method, it is appropriate to define
the optimization problem in greater detail.

Without loss of generality we shall simplify the feature
by referring to a simple cylindrical turning operation. The
material removal rate is the product fvpwhere f is the feed, v
is the speed and p is the depth of cut. The volume of material
to be removed per operation is V� Yp where Y is the tool
path.

The time to complete a feature is V/MRR or Y/ fv.With an
appropriate definition of the constant Y , this result holds even
for more complex features as the ones we are considering.
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The objective function considered is to minimize Y/fv
where Y is a constant depending on the tool path and the
specific geometry of the feature and f and v are the decision
variables. Considering that Y is constant, the minimization
is equivalent to the maximization of fv. In the real case study
considered for this work, the decision variables are con-
strained to have a wear level VB0 less than 0.3 mm at the
end of the feature machining.

During the evolutive online procedure we need a function
to predict the wear level when changing the cutting condi-
tions. To do that we use a simple first-degree polynomial with
a multiplicative term

(1)

V B (v, f ) � β0 + β1v + β2 f + β12v f + ε with ε

∼ N I D
(
0, γ 2

ε

)

To estimate the function (1) we measure the VB at the end
of the machining of each feature and with a linear regres-
sion approach, the VB function is estimated before deciding
the cutting conditions of the procedure next step. The fit-
ted model V̂ B(v, f ) is used to predict the wear level when
changing the decision variables (note that the hat on is a
standard convention to signal that the quantity under the hat
is estimated from experimental data). However, since the V̂ B
(v, f ) is a randomvariable both because themodel (1) has the
stochastic component ε and because the deterministic part is
estimated by experimental data, the stochastic constraint on
the wear level is expressed by:

Prob
(
V̂ B(v, f ) ≤ V B0

) ≤ α (2)

where

• V̂ B(v, f ) is model (1) fitted using experimental data.
• VB0 is the wear limit;
• α is the risk we accept to violate the constraint, which is
the desired average percentage of defective parts.

The probability statement (2) can be formulated as:

̂VV B(v, f ) − V B0 ≤ 0 (3)

where ̂VV B(v, f ) is the inferior limit of the unilateral flank
wear prediction interval with confidence coefficient 1−α and
it is defined as:

(4)

̂VV B (v, f ) � β̂0 + β̂1v + β̂2 f + β̂12v f

+ t1−α (d fE )

√(
1 + xT

(
XT X

)−1
x
)

γ̂ 2
ε

Note that in (4):

• xT � {1, v, f , v f } is the point where we want to estimate
the future tool wear according to the fitted model;

• X is the design matrix;
• df E are the error degrees of freedom in the fitting proce-
dure;

• t1−α(d fE ) is the 1−α-quantile of t-Student distribution
with df E degrees of freedom;

• γ̂ 2
ε is the estimated variance of the regression model (1);

• The quantities with the hat on are the estimated model
parameters at the current step.

Equation (4) is a standard result in linear regression mod-
els. The interested reader can consult a quite popular book
(Draper and Smith 2005) on linear regression topics and the
development of the prediction intervals.

Two different algorithms are proposed and investigated
to estimate V̂ B(v, f ). The first one is the local algorithm
(L), which fits the function (1) using the results of the last
full factorial design. In local algorithm, the function (1) is
always estimated with the same number of data, i.e. 22+ nC .

The second algorithm is called historical (S) and in this
case Eq. (1) is fitted using all the results obtained so far during
the batch manufacturing.

Eventually, the optimization problem is expressed as:

min
v, f

Y

v · f

̂VV B(v, f ) − V B0 ≤ 0

vmin ≤ v ≤ vmax
fmin ≤ f ≤ fmax (5)

Proposed evolutive onlinemethodology

The proposed evolutive optimization procedure works
through the following steps:

Step 1: Machining

• Select a starting point (v0, f0), e.g. the current operating
conditions;

• Build a 22 full factorial experiment centered in the start-
ing point, the central point is replicated nC times;

• Machine andmeasure the tool wear for each experimen-
tal condition.

Step 2: First order model
Fit a first order model with interaction for the flank wear
VB using Eq. (1).

Step 3: Optimization problem
Solve the optimization problem (5)
Let us indicate the optimal solution (v∗, f ∗).
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Step 4: Steepest ascent direction

• The line joining the center point (v0, f0) to (v∗, f ∗) is
the steepest ascent direction;

• A new point is set at a step Delta (Δ) from the previous
center point along the steepest direction. The step � is
defined as a percentage of the total distance between
the two points, (v0, f0) and (v∗, f ∗) in order to have a
conservative approach to the violation of the wear con-
straint;

• Let us indicate (v1, f1) the point at distance � from the
previous center point.

Step 5: Check of the part produced

• Check the total number of good parts (i.e. satisfying the
constraint) produced;

• If the total number of parts produced is less than the
Batch size and we have enough parts to complete the
full factorial design, go back to step 1 after choosing the
working conditions (v1, f1) as the new (v0, f0);

• Otherwise produce the remaining parts using the cutting
conditions (v1, f1).

Procedure validation

The procedure should be validated in a real context. How-
ever, as discussed in the “Problem statement” section, this is
unfeasible given the high costs of the aeronautical parts we
are considering. One could argue that the procedure could be
applied for a simpler process and for materials that are easier
to cut, thus validating the procedure in a simpler case. This
is true but, even in this case, to have enough data to give the
validation process a statistical significance the cost would be
prohibitive for our budget.

The only possibility left is to use a numerical simulation
fed by realistic data and this was the choice we opted to. In
particular, we consider a simple cylindrical turning operation
with a constant depth of cut while feed f and speed v are the
decision variables.

To carry out the simulations, a tool wear equation is
required to mimic the real wear behaviour. To have a realistic
function, a physical experimental campaign was carried out
and theVBwasmeasured at different levels of feed and speed.
Data were analysed and a statistical model linking VB with
feed f , speed v and tool contact time t was obtained where,
as mentioned previously, the tool contact time t depends on
the process parameters as:

t � Y

v f

where Y , in the simple example considered, is the volume to
remove divided by the constant depth of cut. The VB empir-
ical model used for all the simulations is:

(6)

ln (V B (v, f )) � 76.6 − 1.763 ln t − 40 ln v − 9.25 ln f

+ 0.0892 (ln t)2 + 5.03 (ln v)2

+ 0.549 ln v ∗ ln t + 0.549 ln t ∗ ln f

+ 2.095 ln v ∗ ln f + θ where θ

∼ N I D
(
0, σ 2

)

and σ 2 � 0.02922

The empirical model was fitted using the maximization of
the R-sq (adj) parameter.

See “Appendix A” for the relevant details.
The simulator implementing the solution scheme is writ-

ten inMatlab®. The simulation input parameters are changed
to study their influence on the performance of the two pro-
posed evolutionary algorithms.

Simulation results

The goal of the first analysis is to evaluate the performance
of the proposed evolutive procedure considering the main
problem parameters: the number of replicates of the center
point nC , the batch size B, the two algorithm versions, local
L and historical S.

A standard full factorial design has been used. The factors
and their levels are:

• Number of replicates of the center point nC: [2,3,4];
• Batch size B: [30, 50, 100];
• Algorithm version: [L, S].

The 18 different conditions were replicated 100 times. The
other input parameters of the simulations are in Table 1.

The goodness of the algorithm was evaluated comparing
the total simulated batch production time ts with the total
production time of the theoretical ideal condition tott . If the

Table 1 Values of parameters used through the simulation runs

Parameter Value

α 0.05

� 30%

(v0, f0) (60 m/min, 0.22 mm/rev)

VB0 0.3 mm

Y 8000 mm2
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Table 2 Average ϕ and, in brackets, the standard deviation over 100
replicates

nC � 2 nC � 3 nC � 4

Local algorithm

B � 30 1.4159 (0.0512) 1.4242 (0.0443) 1.4315 (0.0421)

B � 50 1.3437 (0.0466) 1.3506 (0,0476) 1.3661 (0.0423)

B � 100 1.2308 (0.0461) 1.2407 (0.0419) 1.2428 (0.0427)

Historical algorithm

B � 30 1.4257 (0.0067) 1.4306 (0.0449) 1.4419 (0.0387)

B � 50 1.3482 (0.0417) 1.3558 (0,0489) 1.3796 (0.0428)

B � 100 1.2263 (0.0400) 1.2492 (0.0325) 1.2644 (0.0366)

tool wear equation had been known in advance, the theoreti-
cal average minimum time to produce a batch B would have
been:

tott � tu B(1 + α) (7)

where tu is the unitary theoretical optimal production time
(“Appendix B”) and α is the maximum allowed expected
scrap piece percentage. The simulated machining time ts is
given by the sum of the production time for each part of the
batch computed during the simulation.

The performance index ϕ � ts
/
tott is used to evaluate

the validity of the proposed procedure. The simulated time
ts is higher than the ideal condition, because the procedure
starts from a non-optimal combination (v, f ). The results of
the simulation campaign are in Table 2.

In Fig. 3 the ϕ simulation results and its value in the start-
ing condition, about 1.54, are reported.

The simulation results in Table 2 and Fig. 3 suggest that:

1. In all the tested conditions, the proposed procedure
improves compared to the initial conditions. For example,
when the batch is equal to 30 the average improvement
is about 10%, while if B� 100 the average improvement
is about 25%.

2. As the batch size B increases, the proposed procedure
performance improves. As a matter of fact, as the batch
size increases the algorithm is able to move the cutting
conditions towards the theoretical optimal one (perfect
a priori knowledge). When the batch size is small (i.e.
30) the number of experiments needed to estimate the
VB function prevents the algorithm to move too far from
the starting point and its performances get worse;

3. The Local algorithm performs comparably or slightly
better than the historical one;

4. As the number of center points nC increases, the perfor-
mance gets worse. To explain this, let us consider the
factorial design 22 with nC central points, in this case the
points with the lower production time (or highest MRR)
are the top right corner of the design while the central
points have a lower value of MRR. A high number of
central points implies the production of parts with a com-
bination of process parameters (v, f ) which increases the
total production time.

In conclusion, the proposed procedure allowed to improve
from the initial combination of parameters and the intro-
duction of the stochastic constraint in a RSM framework
was proven to be beneficial from a production point of view.

Fig. 3 Simulation results
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Moreover, it was showed that even for small batches it was
possible to improve the machining time. The simulation
results suggest that the best experimental design to be used
for the estimation of the tool wear is a 22 factorial with only
two center points. Eventually, the local algorithm should be
used and therefore for the estimate of the tool wear only the
last 22 + nc results should be used.

Sensitivity analysis

To study the influence of the fixed parameters on the new
proposedmethodology, a sensitivity analysis was carried out.
We focused on the following parameters:

• σ 2, i.e. VB true model variance;
• Y , volume to be removed per piece, divided by the constant
depth of cut;

• α, type I error;
• B, batch size;
• �, step size along the steepest ascent direction.

Previously, we have shown that the proposed algorithm per-
forms better with two replicates of central points (nC) and
that the local algorithm has more consistent results for all
the different conditions. The simulations carried out for the
sensitivity analysis are based on these results.

It is important to notice that factors α and σ 2 influence the
tool wear constraint in Eq. (4). In particular, as α decreases,
the constraint becomes tighter, preventing the procedure to
get close to the theoretical optimal point. For this reason, ifwe
change the type I error, a variation in the theoretical optimal
process conditions occurs.On the other hand, asσ 2 increases,
the lower limit of the prediction interval (4) changes, influ-
encing negatively the capability of the algorithm to reach the
theoretical optimal point.

Moreover, Y also influences the theoretical optimal point.
As Y increases, speed and feed must be changed accordingly
to complete the turning operation without exceeding the tool
wear constraint. By inspecting Eq. (3) we see that Y is related
to the machining time t and to the theoretical optimal con-
ditions (vott , fott ). Since different parameter combinations
generate different theoretical optimal conditions (vott , fott ),
a new index is used to compare the results.

We are interested in quantifying the improvement given
by the procedure in respect to the basic case, i.e. no procedure
applied, accounting also for the distance of the starting condi-
tions from the theoretical optimal conditions of the problem.

The used new index is η � ts−ti
topt−ti

where:

• ts is the batch production time;
• ti is the batch production time at the starting conditions;

Table 3 Factorial design for sensitivity analysis

Low level Medium level High level

σ 2 0.01 0.03 0.05

Y 3000 5000 7000

α 0.05 0.025 0.01

B 50 100 150

� 0.1 0.3 0.5

• topt is the batch theoretical optimal production time, cal-
culated according to Eq. (6) and the procedure described
in “Appendix B”.

A 35 full factorial design consisting of 243 different combi-
nation of input is used. The details are reported in Table 3.
Each parameter combination is simulated 100 times and the
number of the experiments used to estimate the tool wear
function at each procedure step is constant and equal to six
(as the number of center point, nC , is set to 2).

The two followings quantities are recorded and analyzed:

• the index η;
• std_η, the standard deviation of the index η, computed over
the 100 replicates for each parameter combination.

The results for index η are reported in Fig. 4.
As shown in the Main Effects plot, the most significant

parameters are the batch size B, the step size � and the
type I error α. As it was expected, the performance of the
procedure decreases as α decreases, since the improvement
reduces when the wear constraint is more stringent. When
the step � along the steepest ascent direction is increased,
the procedure will get close to the theoretical optimal point
faster. An increase in the batch size B results in a better per-
formance of the algorithm, since it has more attempts to get
closer to the theoretical optimal condition.As expected,when
the process noise σ 2 increases, the procedure performance
decreases. The interaction plot does not exhibit an interac-
tion pattern as the lines are nearly parallel and we expect that
the two factor interaction model components have a modest
influence on the response variable.

The ANOVA Table is reported in Table 4.
The ANOVA results in Table 4 confirm the qualitative

remarks discussed above. Two interactions are statistically
significant, but the low F-values suggest that they are not
important from a practical point of view.

The behaviour of the evolutionary algorithm in different
conditions for demonstration purposes only is nowdiscussed.
For a better readability, we will plot only one of the 100
replicates for each condition. In Figs. 5, 6 and 7 only the
centers of the experimental designs are shown to simplify
the reading of the plot.
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Fig. 4 Main effect plot and
interaction plot for index η
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In Fig. 5, the behaviour of the evolutionary algorithm as
the step size changes is shown. The theoretical constraint is
in red and the theoretical optimal condition (red circle) is
placed on it. When we say theoretical, we mean that we are
using the true tool wear equation, not the ones estimated at
each algorithm step. This is a key point to understand why
the centre points does not get close to the theoretical optimal
points in some circumstances.

By inspecting the Fig. 5, it is possible to observe the great
influence of the step size � in going quickly to the VB con-
straint. This result confirmed the ANOVA analysis in Table 4
where the F-value is the maximum observed (509.41).

The influence of the batch size on the proposed proce-
dure performances is evaluated in Fig. 6. The path in blue
(B� 150) approaches the theoretical optimum while when
the batch size is small (B� 50) or (B� 100) the procedure
stops far away from the true constraint and the theoretical
optimal condition.

The other significant factor is type I error, α. In this case,
the position of the theoretical optimal point changes because
the constraint inEq. (2) depends directly onα. Figure 7 shows
how different values of α affect the theoretical constraints,
the theoretical optimal conditions (coloured circles on the
constraints) and the algorithm search. As α is increased, the
constraint estimation reduced the available region of parame-
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Table 4 F-values and p-values of the ANOVA table for the sensitivity
analysis on index η

Factor Type Levels Values

σ2 Fixed 3 0.01; 0.03; 0.05

Y Fixed 3 3000; 5000; 7000

B Fixed 3 50; 100; 150

� Fixed 3 0.1; 0.3; 0.5

α Fixed 3 0.010; 0.025; 0.050

Source DF Adj SS Adj MS F-value p value

Analysis of variance

α 2 23.450 117.251 2002.92 0.000

B 2 31.173 155.863 2662.51 0.000

� 2 58.117 290.585 4963.90 0.000

σ2 2 0.8701 0.43506 743.19 0.000

Y 2 0.2027 0.10136 173.15 0.000

B*α 4 0.0220 0.00550 9.39 0.000

�*α 4 0.0860 0.02149 36.71 0.000

B*� 4 0.0890 0.02224 38.00 0.000

σ2*Y 4 0.0061 0.00153 2.61 0.037

σ2*B 4 0.0054 0.00136 2.32 0.058

σ2*� 4 0.0294 0.00736 12.57 0.000

σ2*α 4 0.0305 0.00763 13.04 0.000

Y*B 4 0.0048 0.00120 2.05 0.089

Y*� 4 0.0152 0.00379 6.48 0.000

Y*α 4 0.0011 0.00027 0.46 0.766

Error 192 0.1124 0.00059

Total 242 127.487

S R-sq R-sq (adj) R-sq (pred)

Model summary

0.0241950 99.12% 98.89% 98.59%

ters. This means that by reducing the probability of accepting
a tool wear higher than 0.3, we reduce the available combina-
tions of feed and speed, reducing the potential improvement
of productivity. As a matter of fact, the performances with α

� 0.99 (in green) are much worse compared to the case of α

� 0.95 (in red). The choice of the confidence level α depends
on the cost of the scrapped part, machining time, batch size
etc.

This consideration is also valid for high values of �, by
increasing its value there is also a higher probability to exceed
the constraint, see Fig. 6. One must keep in mind that �

is lower than 1, so the procedure does not move close to
the estimate constraint, but a conservative approach is used.
However, as the estimation of the constraint is subjected to
error, sometimes the experimental data exceed the constraint.
Exceeding the constrain of a small amount does notmean that
the parts produced are rejected as the constraint is only the
inferior limit of the prediction interval and not the expected
value.

To understand the variability of the simulation results, the
standard deviation of the response η has been computed using
the 100 replicates and indicated as std_η. In this case, since
no replicates are available for the response std_η, we limited
the analysis to two factor interactions only.

The main effects and the interaction plots are reported in
Fig. 8.

From Fig. 8 we conclude that the response standard devi-
ation sd_η is affected mainly by the step size � and the
variance of the wear model σ2; then the type I error α with
a modest influence, eventually Y and B with the same and
small importance. The three factor interactions B* �, σ2*�
and α*� seem to affect the standard deviation more than the
others.

Fig. 5 Proposed procedure behaviour with different step sizes � (σ 2 � 0.03 Local, nc � 2, B� 100, α� 0.025, Y� 5000)
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Fig. 6 Proposed procedure behavior with different batch sizes B (σ 2 � 0.03, � � 0.3, Local, nc � 2, α� 0.025, Y� 5000)

Fig. 7 Proposed procedure behavior with different batch sizes B (σ 2 � 0.03, � � 0.3, Local, nc � 2, α� 0.025, Y� 5000)

A large step size � has a large impact on the results of
the evolutive procedure. The evolutive procedure estimates
the tool wear constraint at each step and moves towards the
estimated optimum with a speed that is proportional to the
step size. If the constraint estimation is not effective, the
evolutive procedure moves towards a non-optimal region.
On the contrary, when the constraint estimate is effective, the
results of the simulation are close to the theoretical optimal
condition. At a small step size, the differences between an
effective and a non-effective estimate of the constraint has a
lower impact on the choice of the new condition for the next
step of the evolutive procedure. This is the same reason why
the step size is also important in terms of interaction on the
final performance of the evolutive procedure, as it is shown
by the Interaction plot.

As an example, let us consider the interaction B*�. With
a small batch size and a small step size: there are few steps
available for moving towards a new region and, moreover,
these steps are limited in length. Therefore, the results in
terms of variability are small. Now consider the case where
the batch is still small, but the step size is large. In this
case, there are few experiments available to reach the opti-
mal point, so an incorrect estimate of the tool wear in one
step leads to non-optimal regions very fast and there might
be insufficient experiments to move back to optimal parame-
ters. Hence, this case is the worst condition in terms of result
variability. On the other hand, a large step size combinedwith
a large batch reduces the probability of completing the batch
production away from an optimal region, as an incorrect
estimate of the constraint can be solved with the remain-
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Fig. 8 Main effect plot and
interaction plot for index sd_η
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ing experiments. This is highlighted in the right-bottom box
in interaction plot of Fig. 8.

Another important factor for the response standard devia-
tion is the variance of the tool wear model, σ2. Intuitively, as
σ2 increases, the process noise increases and therefore it is
more difficult to satisfy the stochastic constraint on the tool
wear [see Eq. (2) and constraint (3)]. With a greater process
noise, the algorithm follows a different direction leading to
different results in terms of ts . The less effective estimate
of the constraint is worsened by a large step size. On the
contrary, a highly precise estimate of the constraint (small
σ2) combined with a large step size, allow the procedure to
move faster towards the theoretical optimum, reducing the
final production time of the batch.

The evolutive procedure variability is affected in a small
part by the type I error. According to the main effect plot in
Fig. 8, the smaller the type I error the larger the variability.
As the constraint moves closer to the initial condition due
to a smaller type I error α, the evolutive procedure becomes
increasingly conservative and therefore small changes in the
constraint estimation result in a higher variability of the total
production time.

The same consideration made for the interaction B*� can
be made for the batch size. A large batch size B increases
the number of experiments available to move towards the
constraint and the theoretical optimal condition, reducing the
influence of other factors such as � and σ2.
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Table 5 F-values and p-values of the ANOVA table for the sensitivity
analysis on index st_η

Factor Type Levels Values

σ2 Fixed 3 0.01; 0.03; 0.05

Y Fixed 3 3000; 5000; 7000

B Fixed 3 50; 100; 150

� Fixed 3 0.1; 0.3; 0.5

α Fixed 3 0.010; 0.025; 0.050

Source DF Adj SS Adj MS F-value p-value

Analysis of variance

α 2 0.017871 0.008936 155.43 0.000

B 2 0.010094 0.005047 87.79 0.000

� 2 0.068758 0.034379 598.00 0.000

σ2 2 0.055990 0.027995 486.96 0.000

Y 2 0.010532 0.005266 91.60 0.000

B*α 4 0.007864 0.001966 34.20 0.000

�*α 4 0.015921 0.003980 69.23 0.000

B*� 4 0.018662 0.004666 81.16 0.000

σ2*Y 4 0.001702 0.000426 7.40 0.000

σ2*B 4 0.001653 0.000413 7.19 0.000

σ2*� 4 0.015145 0.003786 65.86 0.000

σ2*α 4 0.001353 0.000338 5.88 0.000

Y*B 4 0.000854 0.000213 3.71 0.006

Y*� 4 0.003249 0.000812 14.13 0.000

Y*α 4 0.000366 0.000091 1.59 0.178

Error 192 0.011038 0.000057

Total 242 0.241051

MS R-sq R-sq (adj) R-sq (pred)

Model summary

0.0075822 95.42% 94.23% 92.67%

Eventually, when the volume of material to be removed Y
is high, it is easier for the procedure to evaluate the constraint
using theWearmodel of Eq. (5), asmore data are obtained for
the estimate. For this reason, the large information acquired
during the processing of one part reduces the influence of
other factors on the estimate of the steepest ascent direction.

The ANOVA Table is reported in Table 5.
Some terms showed a low p value (<0.05), however their

F-values are small (<70) compared to the other factors such
as B or � and they can be considered negligible. From an
industrial point of view, the higher the uncertainty in the esti-
mation of the tool wear the lowest the improvement in terms
of MRR generated by the procedure. If the process is in con-
trol, the variability of the tool wear should not be excessively
high, and the proposed procedure was proven able to provide
improvements in respect to the starting condition in terms of
productivity, reducing the production of defective parts.

The step size is another important factor to be considered
when applying this evolutionary framework. Increasing �

allows to improve in terms of production time, as showed in
Table 4, however the practitioner should also consider that
this improvement comes with the cost of higher variability in
the results. Batch size,material to be removed and type I error
have a small influence on the variability of the production
time; consequently, the level of these factors could be chosen
based on their effect on the expected results.

Conclusions and future developments

In the present paper, an evolutive procedure for the online
optimization of machining operations has been proposed.
The motivation comes from the machining of very expen-
sive and hard to cut materials such as Inconel 718 Nickel
Superalloy often used in aerospace applications where the
batch sizes are moderate-to small. The main feature of the
developed evolutive procedure is that it is based on the online
measurement of the tool wear at the end of each machining
feature, a procedure used currently by our Company partner.

To search the optimal solution, the evolutive procedure
uses a small experimental design centred in the current
machining conditions. The design estimates the tool wear
relationship which links the tool wear with the cutting
parameters, and it estimates the wear constraint in terms of
maximum allowable wear. Eventually, it moves the current
machining conditions along the steepest ascent directionwith
a certain step size Δ.

The evolutive procedure stops when the number of total
good parts (satisfying the tool wear constraint) is equal to the
batch size B. Two different versions of the algorithm (Local
L and Historical S) have been proposed and investigated.

The evaluation of the proposed evolutive online procedure
has been carried out through an extensive simulation to have
statistically significant results. To carry out the simulations, a
tool wear equation has been fit through an experimental cam-
paign to mimic the real tool wear behaviour. The simulation
input parameters have been varied to study their influence on
the performance of the proposed evolutionary algorithms.

The main results of this study can be summarized as fol-
lows:

1. In all the tested conditions, machining with the proposed
evolutive procedure is better than machining with the
starting conditions.

2. The algorithm L (Local) shows a comparable if not better
performance than S (Historical) one;

3. As the number of experiment central points increases, the
evolutionary procedure performance gets worse;

4. The effectiveness of the evolutive procedure decreases as
the safety coefficient 1−α decreases;
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5. As the toolwear constraint ismore stringent, the potential
improvement reduces;

6. As the step along the steepest ascent direction is
increased, the procedure quickly gets close to the the-
oretical optimal point;

7. When the volume to be removed or the batch size B
increases, the evolutive procedure has more information
to find the theoretical optimal condition and improves its
performances;

8. The importance of the step size reduces as the batch size
increases.

However, from a scientific point of view, some issues about
the procedure are still open and could be investigated, e.g.

• Dynamic setting of the step size, perhaps decreasing it
when approaching the constraints;

• The role of a higher number of constraints, considering for
example power or surface roughness;

• Application of the evolutive procedure to other types of
machining operations such as rough turning and milling.

• Study of the potentiality of the procedure in case the inserts
can machine several different features of the same part or
several equal features belonging to consecutive parts.

From an industrial point of view the proposed evolutive pro-
cedure is economically interesting because it can be applied
online, directly on the manufacturing process without addi-
tional costs since the Wear measurement is currently made.
As a matter of fact, the procedure is currently assessed by
the Company partner for application on the shop floor; one
crucial point is to understand if the certification issues can
be overcome, considering that they are of paramount impor-
tance in the aeronautical context.

Symbol Measurement
units

Definition Value

v m/min Speed

f mm/rev Feed

vmin m/min Minimum
speed

55

vmax m/min Maximum
speed

75

fmin mm/rev Minimum feed 0.196

fmax mm/rev Maximum feed 0.285

(v0, f 0) (m/min,
mm/rev)

Starting point (60; 0.22)

(v*, f*) (m/min,
mm/rev)

Online solution
of the
optimization
problem with
a stochastic
constraint

Symbol Measurement
units

Definition Value

(vott , f ott) (m/min,
mm/rev)

Theoretical
optimal
condition, if
the real tool
wear
constraint
was perfectly
known

Y mm2/part Constant which
depends on
the feature
tool path and
geometry. In
parallel
turning Y is
the volume to
be removed
divided by the
depth of cut

8000;
sensitivity
analy-
sis:{3000,
5000, 7000}

X – Design matrix

tα (df E) – α-quantile of a
t-Student
distribution
with df E
degrees of
freedom

VB mm Tool flank wear
width
according to
the ISO
standard [19]

VB0 mm Maximum tool
wear allowed

0.3

V̂ B(v, f ) mm Tool wear
model
estimated at
each
procedure
step

̂VV B(v, f ) mm Inferior limit of
the unilateral
flank Wear
Prediction
Interval with
confidence
coefficient
1−α

estimated at
each
procedure
step

� % Step size in
steepest
ascent
direction

30; sensitivity
analysis: {10,
30, 50}

B part Batch size {50, 100, 150}
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Symbol Measurement
units

Definition Value

nC – Number of
central points
in the
experimental
design

{2;3;4};

α – Type I error 0.05;
Sensitivity
analysis:
{0.01;0.025;0.05}

t s/part Contact time
t � Y/v f

ti s Batch
production
time at the
starting
conditions

ts s Simulated
batch
machining
time

tu s/part Unit theoretical
optimal
machining
time

tott s Batch
theoretical
optimal
machining
time knowing
the unit
theoretical
optimum
conditions

γ̂ 2
ε mm2 Estimated

variance of
the tool wear
relationship
at each
procedure
step

σ̂ 2
ε mm2 Estimated

variance of
the true tool
wear
relationship
used in the
first
simulation
campaign

0.02922

σ 2 mm2 Variance of the
true tool wear
relationship
in Sensitivity
analysis

Sensitivity
analy-
sis:{0.01,
0.03, 0.05}

ϕ Performance
index
ϕ � ts/tott

η – Index
η � ts−ti

topt−ti

Symbol Measurement
units

Definition Value

sd_η – Standard
deviation of
the index
estimated
through the
simulation on
100 replicates
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Appendix A: Tool wear equation

An experimental activity was performed to fit the Tool wear
equation by changing speed v and feed f , keeping the depth
of cut p constant. Specifically, the experimental tests were
carried out on cylindrical bars in Inconel 718 Nickel Super-
alloy (hardness equal to 43 HRC).

The dimensions of the bars used were:

• Diameter � 102.6 mm;
• Length � 500 mm.

The tests were carried out on a lathe (nominal power equal
to 22 KW) in dry cooling conditions.

The tool used in the experimental activity was a coated
VBMT, with a tool tip radius equal to 1.6 mm. Its bulk chem-
ical composition is:

• 89.3% WC;
• 10.2% Co;
• 0.2% TaC.

The coating consisted of three layers, as below reported:

• TiCN internal layer (thick 2.2 μm);
• Al2O3 central layer (thick 1.5 μm);
• TiN external layer (thick 0.5 μm).

A Dinolite Pro AM413T microscope (230×magnification)
was used to measure the flank wear width VB during the test
execution. A full factorial experiment was designed and car-
ried out and the investigated levels of the cutting parameters
were:

• f � 0.196–0.214–0.249–0.285 (mm/rev);
• v � 55, 65, 75 (m/min).
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Fig. 9 Example for the tool
Flank wear detection

Test 
ID

f
[mm/rev]

S
[m/min]

01_06 0.196 55
00 0.214 55
04 0.249 55

05_11 0.285 55
14 0.196 65
03 0.214 65
12 0.249 65
08 0.285 65

09_15 0.196 75
13 0.214 75
10 0.249 75

02_07 0.285 75

Fig. 10 Tool Flank wear (VB) versus time for the experimental conditions

As previously mentioned, a constant depth of cut p, equal
to 1.5 mm, was set. Subsequently, twelve combinations of f
and v were considered. One replication was performed for
the vertices points of the design resulting in 16 runs.

The flank wear width VB was measured in accordance
with the ISO 3685 Standard.

For each run, the measurements of the VB width were
made at regular time intervals, depending on the actual val-
ues of the cutting parameters. Hence, small time intervals
correspond to high cutting parameters, as in these conditions
tool wear is faster. The sequence for each test is described as
follows:

• Step 0: turning is executed for a fixed time interval;
• Step 1: the tool is removed from the tool holder and then
positioned below the microscope lens; the operator cap-
tures the picture (focused on the tool wear region) and
measures the VB (see Fig. 9) in accordance with the ISO
3685 Standard; after the Wear measurement the tool is
placed again on the tool holder and then used for a new time
interval, repeating the Step 1. This operation is repeated
several times until the default VB limit of 0.30 mm is
reached or exceeded.

In Fig. 10, the VB versus time trends are shown for the inves-
tigated conditions.
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Table 6 ANOVA table for regression analysis: Ln VB versus Ln t;
LnSpeed; LnFeed

Source DF Adj SS Adj MS F-value p-value

Regression 8 15.2346 1.90432 65.16 0.000

Ln t 1 0.2308 0.23075 7.90 0.006

LnSpeed 1 0.4383 0.43834 15.00 0.000

LnFeed 1 0.2488 0.24880 8.51 0.004

Ln t*Ln t 1 0.6016 0.60160 20.59 0.000

LnSpeed*LnSpeed 1 0.4870 0.48704 16.67 0.000

Ln t*LnSpeed 1 0.4382 0.43817 14.99 0.000

Ln t*LnFeed 1 0.4664 0.46638 15.96 0.000

LnSpeed*LnFeed 1 0.2483 0.24829 8.50 0.004

Error 172 5.0266 0.02922

Lack-of-fit 137 2.9841 0.02178 0.37 1.000

Pure error 35 2.0425 0.05836

Total 180 20.2612

Table 7 Model summary

S R-sq R-sq (adj) R-sq (pred)

0.170952 75.19% 74.04% 72.60%

The experimental data were used to estimate the function
V B � V B( f , v, t), where t represents the tool contact time
t � Y/ f v (Y is a constant depending on the volume of the
material to be removed and other technological parameters,
e.g. the depth of cut). The empirical equation found byLinear
Regression is:

ln (V B (v, f )) � 76.6 − 1.763 ln t − 40 ln v − 9.25 ln f

+ 0.0892 (ln t)2 + 5.03 (ln v)2 + 0.549 ln v

∗ ln t + 0.549 ln t ∗ ln f + 2.095 ln v

∗ ln f + θ where θ ∼ N I D
(
0, σ 2

)

and σ 2 � 0.02922

(A1)

Note that the empirical equation is estimated from the
experimental data, however we will not use the hat notation
because we consider it as if it were perfectly known. This
is not an issue because we use the Eq. A1 to sample VB to
mimic the real process. Some regression details are reported
in the following tables (Tables 6, 7) and the analysis of the
residuals is showed in Fig. 11.

Appendix B: Theoretical optimal conditions

If the Tool wear equationwas perfectly known the theoretical
optimal solution could be easily derived. Let us consider that
the tool wear is a random variate V B ∼ D

(
μ(v, f ), σ 2

ε

)
where D is a known probability distribution with Expected
(V B) � μ(v, f ) and Variance(V B) � σ 2

ε The stochastic
optimization problem can be transformed into a deterministic
one as follows:

(a) (b)
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Fig. 11 Standardized residuals probability (a) and scatter plots (b)
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min
v, f

Y

v · f

Pr{V B(v, f ) ≥ V B0} ≤ α

vmin ≤ v ≤ vmax

fmin ≤ f ≤ fmax (B1)

whereVB0 is themaximum toolwear allowed, in our case it is
0.3 mm. The solution of the problem (B1) is the theoretical
optimum (vott , fott ), and the corresponding unit optimum
tool contact time is equal to tu � Y

vott · fott . The average batch
optimal production time can be derived as follows:

topt � tu B(1 + α) (B2)

Note that Eq. (B2) accounts for the expected proportion
of defective parts α (i.e. scraps generated by a tool wear
measured at the end of the machining of a feature greater
than V B0).

Appendix C: Tool wear data

TEST01 TEST_00 TEST_04 TEST05_11

S � 55 m/min F
� 0.196 mm/rev

S � 55 m/min F
� 0.214 mm/rev

S � 55 m/min F
� 0.249 mm/rev

S � 55 m/min F
� 0.285 mm/rev

Time Average
VB

Time Average
VB

Time VB
Aver-
age

Time VB
Aver-
age

(s) (mm) (s) (mm) (s) (mm) (s) (mm)

10 0.142 10 0.129 10 0.135 10 0.134

30 0.163 20 0.138 20 0.157 20 0.153

50 0.172 30 0.148 30 0.175 30 0.164

70 0.202 40 0.152 40 0.188 40 0.181

90 0.202 50 0.168 50 0.217 50 0.201

110 0.205 60 0.179 60 0.251 60 0.220

130 0.227 70 0.181 70 0.273 70 0.256

150 0.234 80 0.184 75 0.302 80 0.271

170 0.259 90 0.190 80 0.337 85 0.303

190 0.263 100 0.199 85 0.385

210 0.292 110 0.204 90 0.405

230 0.291 120 0.208

250 0.330 130 0.247

140 0.248

150 0.273

160 0.283

170 0.291

180 0.301

TEST14 TEST_03 TEST_12 TEST_08

S � 65 m/min F
� 0.196 mm/rev

S � 65 m/min F
� 0.214 mm/rev

S � 65 m/min F
� 0.249 mm/rev

S � 65 m/min F
� 0.285 mm/rev

Time Average
VB

Time VB
Aver-
age

Time VB
Aver-
age

Time VB
Aver-
age

(s) (mm) (s) (mm) (s) (mm) (s) (mm)

10 0.104 10 0.078 10 0.103 10 0.174

20 0.119 20 0.092 20 0.118 20 0.214

30 0.127 30 0.092 30 0.142 30 0.224

40 0.123 40 0.102 40 0.158 40 0.276

50 0.139 50 0.108 50 0.172 45 0.274

60 0.146 60 0.111 60 0.215 50 0.295

70 0.159 70 0.168 70 0.243 55 0.317

80 0.167 80 0.169 80 0.283 60 0.341

90 0.172 90 0.180 90 0.341

100 0.182 100 0.192

110 0.192 110 0.215

120 0.198 120 0.232

130 0.197 130 0.303

140 0.208

150 0.217

160 0.245

170 0.270

180 0.282

190 0.270

TEST09_15 TEST_13 TEST_10 TEST02_07

S � 75 m/min F
� 0.196 mm/rev

S � 75 m/min F
� 0.214 mm/rev

S � 75 m/min F
� 0.249 mm/rev

S � 75 m/min F
� 0.285 mm/rev

Time Average
VB

Time VB
Aver-
age

Time VB
Aver-
age

Time VB
Aver-
age

(s) (mm) (s) (mm) (s) (mm) (s) (mm)

10 0.116 10 0.111 10 0.164 10 0.173

20 0.135 20 0.135 20 0.185 20 0.208

30 0.148 30 0.146 30 0.217 30 0.242

40 0.168 40 0.153 40 0.225 35 0.257

50 0.177 50 0.170 45 0.235 40 0.287

60 0.189 60 0.184 50 0.255 45 0.328

70 0.230 70 0.197 60 0.287 50 0.356

80 0.254 80 0.204 65 0.325

90 0.280 90 0.230 70 0.360

100 0.239 75 0.456

110 0.265 80 0.560

120 0.311

130 0.412
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