MATEMATICA (LM39)

(Lecce - Università degli Studi)

Insegnamento METODI MATEMATICI PER IL RISK MANAGEMENT

GenCod A004905

Docente titolare Aldo LETIZIA

Insegnamento METODI MATEMATICI PER IL RISK MANAGEMENT

Insegnamento in inglese

MATHEMATICAL METHODS FOR RISK

Settore disciplinare SECS-S/06

Corso di studi di riferimento

MATEMATICA

Tipo corso di studi Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore Attività frontale:

42.0

Per immatricolati nel 2020/2021

Erogato nel 2021/2022

Anno di corso 2

Lingua ITALIANO

Percorso APPLICATIVO

Sede Lecce

Tipo esame Orale

Valutazione Voto Finale

Periodo Primo Semestre

Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

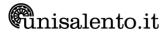
Il corso punta ad integrare, in un percorso di studi matematici, le conoscenze di economia e di finanza necessarie per affrontare con competenza problematiche complesse nell'ambito della valutazione degli strumenti finanziari e nella misurazione dei rischi.

PREREQUISITI

Conoscenze generali di matematica, conoscenze base di statistica descrittiva e di calcolo delle probabilità.

OBIETTIVI FORMATIVI

Conoscenze e comprensione. Combinare conoscenze base di teoria finanziaria e competenze avanzate di finanza quantitativa tali da consentire la comprensione e l'applicazione consapevole delle metodologie di valutazione degli strumenti finanziari di qualsiasi natura e di misurazione dei relativi rischi.


Capacità di applicare conoscenze e comprensione: # Riconoscere le determinanti del valore degli strumenti finanziari. # Essere in grado di scomporre un'operazione finanziaria nei suoi costituenti elementari, calcolarne il valore e riconoscere i relativi fattori di rischio. #Essere capaci di sviluppare modelli di misurazione dei rischi applicabili nell'ambito dei sistemi di risk management delle banche. Autonomia di giudizio. Il corso combinerà lezioni teoriche e fasi di applicazione su Excel volte a sviluppare nello studente capacità di modeling e possibilità di sperimentazione delle metodologie apprese. L'uso del metodo Monte Carlo sviluppa nello studente la capacità di affrontare tematiche complesse, non gestibili attraverso un approccio deterministico.

Abilità comunicative. Accompagnando lo studio degli aspetti matematici dei modelli con la spiegazione degli elementi base di finanza si punta a rendere lo studente consapevole dei fondamenti della modellistica studiata e si promuove lo sviluppo di un linguaggio utile a comunicare il significato degli indicatori di rischio anche fuori dagli ambiti specifici del risk management.

Capacità di apprendimento. Attraverso l'invito ad approfondire specifici argomenti e la sollecitazione all'applicazione pratica delle metodologie trattate in aula si tende a sviluppare nello studente la capacità di approfondire le materie studiate e seguirne, in autonomia, lo sviluppo successivo.

METODI DIDATTICI	Lezioni frontali in aula ed esercitazioni in laboratorio informatico.
MODALITA' D'ESAME	L'esame consiste in una prova orale con discussione di alcune metodologie di valutazione degli strumenti finanziari e di misurazione dei rischi. Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL
ALTRE INFORMAZIONI UTILI	Durante il corso, saranno distribuite slides relative agli argomenti trattati e cartelle Excel con prototipi dei modelli utilizzati. Saranno anche segnalati articoli e working papers relativi ad alcuni temi di approfondimento.

PROGRAMMA ESTESO

Prima parte: valutazione degli strumenti finanziari

Discounted Cash Flow Analysis (richiamo)

- Tecniche di cash flow mapping.
- Struttura dei rendimenti per scadenza.
- Curve di rendimenti con nodi negativi.
- Modelli di fair evaluation a doppia curva.

Valutazione degli strumenti plain vanilla

- Valutazione delle strutture elementari (fixed/floater, interest rate swap,...).
- Valutazione delle strutture composte (step-up/down, reverse floater, ...).

Conduzione di esperimenti casuali con Excel

- Generazione di numeri casuali.
- Scrittura di routines in VBA per la simulazione Monte Carlo.
- Conduzione di esperimenti casuali multi-variati.

Processi di diffusione dei prezzi di azioni, indici e tassi di interesse

- Modeling di processi Lognormali mean reverting.
- Processi di diffusione dei prezzi azionari e dei tassi d'interesse.

Metodologie di option pricing

- Valutazione delle opzioni su azioni, obbligazioni e tassi d'interesse (Black 76).
- Utilizzo di superfici e cubi di volatilità dei tassi.
- I modelli Black-Normal e shifted-Lognormal per il calcolo delle opzioni su tassi in presenza di nodi di curva negativi.

Il pricing degli strumenti complessi

- Identificazione delle componenti elementari (building-block approach).
- Valutazione integrale mediante metodo Monte Carlo.
- Valutazione delle strutture atipiche.

Calcolo delle perdite attese sui crediti

- Analisi della migrazione tra classi di rischio.
- Costruzione delle curve di default.
- I criteri di stima della Loss Given Default.
- Calcolo della *lifetime* Expected Credit Loss.

Seconda parte: misurazione dei rischi

Il rischio di tasso di interesse

- Misure di sensitivity del valore degli strumenti finanziari alle oscillazione dei tassi d'interesse.
- Calcolo della volatilità di un singolo nodo della curva dei tassi risk-free.
- Calcolo della correlazione tra i nodi della curva.

Il rischio di spread

- Differenza tra rischio di tasso e rischio di spread.
- Tecniche avanzate di Discounted Cash Flow Analysis.
- Misure di sensitivity alle oscillazioni dei credit spread.
- Misure di sensitivity alle oscillazioni del market spread.

Dinamica dei prezzi azionari

- Verifica dell'ipotesi di Lognormalità dei prezzi azionari.
- Gli effetti della diversificazione.
- Calcolo e significato del coefficiente Beta.

Il rischio a livello di portafoglio

- Il Value at Risk: definizioni e significato.
- Calcolo del VaR parametrico e dell'Expected Shortfall.
- Var Marginale, Component VaR e Delta VaR.

Il rischio di credito della singola controparte

- Modelli di analisi discriminante lineare.
- Stima dei modelli di rating.
- Backtesting dei modelli di rating.

Il modello di Merton

- Ipotesi alla base dei modelli á la Merton.
- Dinamica del Total Asset Value.
- Valore delle opzioni implicite nella struttura del capitale.
- Calcolo del credit spread, della probabilità di default e del tasso di recupero.
- Rischio di migrazione: punti di ingresso nelle classi di rating.

Il rischio di credito misurato a livello di portafoglio

- Approccio default-mode e approccio multi-stato.
- La distribuzione delle perdite.
- Effetti della diversificazione single-name e geo-settoriale.

Costruzione dei modelli di portafoglio ad un solo fattore di rischio sistemico

- Generazione di variabili casuali Normali bivariate.
- Costruzione della distribuzione delle perdite e calcolo del Credit VaR.

Automazione del modello mediante codice VBA

- Routines di innesco della simulazione Monte Carlo.
- Approssimazione analitica della Loss Distribution mediante Distribuzione Beta.

Costruzione dei modelli di portafoglio multi-fattoriali

- Effetti della correlazione infra- e inter-settoriale.
- Conduzione di esperimenti casuali multivariati in Excel.

TESTI DI RIFERIMENTO

John Hull, Opzioni, futures ed altri derivati, Pearson, 10a Edizione, Gennaio 2018.

