INGEGNERIA DELL'INFORMAZIONE (LB08)

(Lecce - Università degli Studi)

Insegnamento SEGNALI E SISTEMI

Insegnamento SEGNALI E SISTEMI Anno di corso 2

Insegnamento in inglese SIGNALS AND Lingua ITALIANO

SYSTEMS

Settore disciplinare ING-INF/03 Percorso PERCORSO COMUNE

Corso di studi di riferimento INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studi Laurea Sede Lecce

Crediti 9.0 **Periodo** Secondo Semestre

Ripartizione oraria Ore Attività frontale: Tipo esame Orale

81.0

Per immatricolati nel 2020/2021 Valutazione Voto Finale

Erogato nel 2021/2022 Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

GenCod A005786

Docente titolare Giuseppe RICCI

Docenti responsabili dell'erogazione ANGELO COLUCCIA, Giuseppe RICCI

Programma del corso.

Segnali: definizione e proprietà (classificazione). Segnali elementari. Energia e potenza di un segnale (8 ore). Svolgimento di esercizi sugli argomenti trattati (3 ore).

Sistemi: definizione e classificazione. Analisi nel dominio del tempo dei sistemi descritti da equazioni differenziali lineari a coefficienti costanti e da equazioni alle differenze lineari a coefficienti costanti. Analisi nel dominio del tempo dei sistemi descritti in termini di risposta impulsiva (12 ore). Svolgimento di esercizi sugli argomenti trattati anche utilizzando Octave/Matlab (8 ore).

Trasformata di Laplace e trasformata Zeta per sistemi rispettivamente a tempo continuo e a tempo discreto. Analisi dei sistemi utilizzando la trasformata di Laplace/Zeta (8 ore). Svolgimento di esercizi sugli argomenti trattati (6 ore).

Serie e trasformata di Fourier. Analisi dei sistemi utilizzando la trasformata di Fourier. Caratterizzazione energetica dei segnali. Filtri ideali e filtri reali (10 ore). Svolgimento di esercizi sugli argomenti trattati (10 ore).

Il teorema del campionamento ideale ed il teorema del campionamento di tipo "Sample & Hold" (6 ore)

La DFT e le sue applicazioni al filtraggio e all'analisi spettrale anche utilizzando Octave/Matlab;

PREREQUISITI

Conoscenze preliminari: Analisi I; sono anche utili i contenuti di Analisi II.

OBIETTIVI FORMATIVI

Obiettivi del corso.

Il corso fornisce gli strumenti fondamentali per l'elaborazione dei segnali sia a tempo continuo che a tempo discreto. L'enfasi è sui sistemi lineari e tempo-invarianti (LTI). Si studiano, in particolare, sistemi descritti da equazioni differenziali e da equazioni alle differenze. L'analisi è condotta nel dominio del tempo (in termini di prodotto di convoluzione tra ingresso e risposta impulsiva del sistema), ma anche utilizzando la trasformata di Fourier e quella di Laplace/Zeta. Si introduce, inoltre, il concetto di modulazione e se ne mostrano applicazioni alle comunicazioni analogiche. La trasformata di Fourier per segnali a tempo continuo viene anche utilizzata per giustificare i risultati fondamentali relativi alla conversione dei segnali da tempo continuo a tempo discreto (teorema del campionamento ideale e teorema del campionamento di tipo "Sample & Hold"). Si introduce, infine, la trasformata di Fourier discreta (DFT) ed alcune sue applicazioni.

Risultati di apprendimento.

Conoscenze e comprensione

Dopo il corso lo studente dovrà avere le conoscenze di base di teoria dei segnali che riguardano *la definizione e la classificazione di segnali e sistemi.

*Le principali proprietà della trasformata di Fourier (a tempo continuo e a tempo discreto), della trasformata di Fourier discreta (DFT), della trasformata di Laplace per segnali a tempo continuo e della trasformata Zeta per segnali a tempo discreto.

*Gli aspetti fondamentali della conversione da segnale a tempo continuo a segnale a tempo discreto.

Capacità di applicare conoscenze e comprensione

Dopo il corso lo studente dovrà essere in grado di

*determinare nel dominio del tempo la risposta di un sistema LTI all'ingresso (eventualmente in termini di risposta in evoluzione libera e risposta forzata).

*Saper utilizzare le trasformate per lo studio dei segnali e dei sistemi ed il calcolo della risposta di un sistema LTI.

Autonomia di giudizio

Attraverso esempi ed esercizi lo studente dovrà acquisire la capacità di confrontare approcci differenti alla soluzione di uno specifico problema.

Abilità comunicative

Durante il corso lo studente dovrà acquisire la capacità di descrivere in modo rigoroso concetti di base della teoria dei segnali e la soluzione adottata ad uno specifico esercizio.

Capacità di apprendimento

Anche se in forma minima gli studenti saranno chiamati ad una analisi critica dei concetti e delle metodologie introdotte nel corso; la capacità critica va intesa come primo passo nell'acquisizione della capacità di aggiornamento professionale (e culturale) continuo realizzato anche in autonomia.

METODI DIDATTICI

Lezioni teoriche, esercitazioni numeriche ed esercitazioni al calcolatore a cui va aggiunto lo studio svolto autonomamente dagli studenti.

MODALITA' D'ESAME

Modalità di verifica delle conoscenze acquisite.

Esame scritto. L'esame consiste di due prove in cascata (massima durata: 2 ore):

nella prima prova (tempo consigliato 50 minuti) non è consentito consultare libri o appunti; lo studente deve illustrare due argomenti teorici: la prova mira a verificare il livello di conoscenza e comprensione degli argomenti del corso e la capacità di esporli; ciascuno dei due quesiti ha un peso di norma pari a 5/30;

nella seconda parte della prova, che inizia quando lo studente termina la prima prova, è consentito utilizzare il libro di testo per risolvere due o tre semplici problemi; la prova mira a determinare la capacità dello studente di selezionare ed applicare correttamente le metodologie proposte per l'analisi di segnali e sistemi; ciascun problema si compone di diversi quesiti a ciascuno dei quali è attribuito un punteggio di norma tra 2/30 e 4/30 (il peso complessivo della seconda parte della prova è di norma pari a 20/30).

Per il superamento dell'esame è necessario rispondere in maniera completa e corretta ad almeno uno dei due quesiti teorici e raggiungere la sufficienza sommando i punteggi di entrambe le prove.

ALTRE INFORMAZIONI UTILI

Orario di ricevimento: previo appuntamento da concordare per email o al termine delle lezioni. Per ulteriore materiale didattico si rimanda all'url ricci.unile.it. Per il materiale didattico più recente si rimanda a questo sito (necessario autenticarsi).

PROGRAMMA ESTESO

Segnali e Sistemi - Corso di laurea in Ingegneria dell'Informazione (Il semestre)

Obiettivi del corso.

Il corso fornisce gli strumenti fondamentali per l'elaborazione dei segnali sia a tempo continuo che a tempo discreto. L'enfasi è sui sistemi lineari e tempo-invarianti (LTI). Si studiano, in particolare, sistemi descritti da equazioni differenziali e da equazioni alle differenze. L'analisi è condotta nel dominio del tempo (in termini di prodotto di convoluzione tra ingresso e risposta impulsiva del sistema), ma anche utilizzando la trasformata di Fourier e quella di Laplace/Zeta. Si introduce, inoltre, il concetto di modulazione e se ne mostrano applicazioni alle comunicazioni analogiche. La trasformata di Fourier per segnali a tempo continuo viene anche utilizzata per giustificare i risultati fondamentali relativi alla conversione dei segnali da tempo continuo a tempo discreto (teorema del campionamento ideale e teorema del campionamento di tipo "Sample & Hold"). Si introduce, infine, la trasformata di Fourier discreta (DFT) ed alcune sue applicazioni.

Risultati di apprendimento.

Conoscenze e comprensione

Dopo il corso lo studente dovrà avere le conoscenze di base di teoria dei segnali che riguardano *la definizione e la classificazione di segnali e sistemi.

*Le principali proprietà della trasformata di Fourier (a tempo continuo e a tempo discreto), della trasformata di Fourier discreta (DFT), della trasformata di Laplace per segnali a tempo continuo e della trasformata Zeta per segnali a tempo discreto.

*Gli aspetti fondamentali della conversione da segnale a tempo continuo a segnale a tempo discreto.

Capacità di applicare conoscenze e comprensione

Dopo il corso lo studente dovrà essere in grado di

*determinare nel dominio del tempo la risposta di un sistema LTI all'ingresso (eventualmente in termini di risposta in evoluzione libera e risposta forzata).

*Saper utilizzare le trasformate per lo studio dei segnali e dei sistemi ed il calcolo della risposta di un sistema LTI.

Autonomia di giudizio

Attraverso esempi ed esercizi lo studente dovrà acquisire la capacità di confrontare approcci differenti alla soluzione di uno specifico problema.

Abilità comunicative

Durante il corso lo studente dovrà acquisire la capacità di descrivere in modo rigoroso concetti di base della teoria dei segnali e la soluzione adottata ad uno specifico esercizio.

Capacità di apprendimento

Anche se in forma minima gli studenti saranno chiamati ad una analisi critica dei concetti e delle metodologie introdotte nel corso; la capacità critica va intesa come primo passo nell'acquisizione della capacità di aggiornamento professionale (e culturale) continuo realizzato anche in autonomia.

Programma del corso.

Segnali: definizione e proprietà (classificazione). Segnali elementari. Energia e potenza di un segnale (8 ore). Svolgimento di esercizi sugli argomenti trattati (3 ore).

Sistemi: definizione e classificazione. Analisi nel dominio del tempo dei sistemi descritti da equazioni differenziali lineari a coefficienti costanti e da equazioni alle differenze lineari a coefficienti costanti. Analisi nel dominio del tempo dei sistemi descritti in termini di risposta impulsiva (12 ore). Svolgimento di esercizi sugli argomenti trattati anche utilizzando Octave/Matlab (8 ore).

Trasformata di Laplace e trasformata Zeta per sistemi rispettivamente a tempo continuo e a tempo discreto. Analisi dei sistemi utilizzando la trasformata di Laplace/Zeta (8 ore). Svolgimento di esercizi sugli argomenti trattati (6 ore).

Serie e trasformata di Fourier. Analisi dei sistemi utilizzando la trasformata di Fourier. Caratterizzazione energetica dei segnali. Filtri ideali e filtri reali (10 ore). Svolgimento di esercizi sugli

Il teorema del campionamento ideale ed il teorema del campionamento di tipo "Sample & Hold" (6 ore).

La DFT e le sue applicazioni al filtraggio e all'analisi spettrale anche utilizzando Octave/Matlab; progetto di filtri FIR con il metodo della finestra anche utilizzando Octave/Matlab (10 ore).

Conoscenze preliminari: Analisi I; sono anche utili i contenuti di Analisi II.

Modalità di verifica delle conoscenze acquisite

Esame scritto. L'esame consiste di due prove in cascata (massima durata: 2 ore):

nella prima prova (tempo consigliato 50 minuti) non è consentito consultare libri o appunti; lo studente deve illustrare due argomenti teorici: la prova mira a verificare il livello di conoscenza e comprensione degli argomenti del corso e la capacità di esporli; ciascuno dei due quesiti ha un peso di norma pari a 5/30;

nella seconda parte della prova, che inizia quando lo studente termina la prima prova, è consentito utilizzare il libro di testo per risolvere due o tre semplici problemi; la prova mira a determinare la capacità dello studente di selezionare ed applicare correttamente le metodologie proposte per l'analisi di segnali e sistemi; ciascun problema si compone di diversi quesiti a ciascuno dei quali è attribuito un punteggio di norma tra 2/30 e 4/30 (il peso complessivo della seconda parte della prova è di norma pari a 20/30).

Per il superamento dell'esame è necessario rispondere in maniera corretta e completa ad almeno uno dei due quesiti teorici e raggiungere la sufficienza sommando i punteggi di entrambe le prove. **Orario di ricevimento:** previo appuntamento da concordare per email o al termine delle lezioni.

Testi di riferimento.

[1] G. Ricci, M. E. Valcher, "Segnali e Sistemi", Libreria Progetto Editore, Padova, 2015.

[2] A. V. Oppenheim, A. S. Willsky, "Signals and Systems", Prentice Hall Signal Processing Series, Prentice Hall International Limited, London (UK), 1997.

TESTI DI RIFERIMENTO

[1] G. Ricci, M. E. Valcher, "Segnali e Sistemi", Libreria Progetto Editore, Padova, 2015.

[2] A. V. Oppenheim, A. S. Willsky, "Signals and Systems", Prentice Hall Signal Processing Series, Prentice Hall International Limited, London (UK), 1997.

