
FISICA (LM38)

(Lecce - Università degli Studi)

Insegnamento FISICA AI COLLISORI		Insegnamento FISICA AI COLLISORI	Anno di corso 2
		Insegnamento in inglese COLLIDER PHYSICS	Lingua ITALIANO
GenCod A004147		Settore disciplinare FIS/04 Corso di studi di riferimento FISICA	Percorso FISICA SPERIMENTALE DELLE INTERAZIONI FONDAMENTALI
Docente titolare Margherita PRIMAVERA			
		Tipo corso di studi Laurea Magistrale	Sede Lecce
		Crediti 7.0	Periodo Primo Semestre
		Ripartizione oraria Ore Attività frontale 49.0	e: Tipo esame Orale
		Per immatricolati nel 2021/2022	Valutazione Voto Finale
		Erogato nel 2022/2023	Orario dell'insegnamento https://easyroom.unisalento.it/Orario
BREVE DESCRIZIONE DEL CORSO PREREQUISITI	Il corso si propone di introdurre e sviluppare gli aspetti sperimentali della fisica delle alte energie investigata agli acceleratori di particelle. Si illustreranno i più significativi risultati ottenuti da alcuni dei principali esperimenti agli acceleratori di particelle negli ultimi cinquant'anni. Corso di Fenomenologia delle Particelle Elementari		
OBIETTIVI FORMATIVI	Obiettivi formativi previsti dal corso: conoscenza altamente specializzata e critica della moderna fisica delle alte energie agli acceleratori, sia negli aspetti teorici che sperimentali che nelle loro interconnessioni; capacità di comprendere, analizzare e sintetizzare argomenti di fisica avanzata; capacità di mettere in atto procedure sperimentali e teoriche innovative per risolvere problemi di ricerca inerenti nuove scoperte o il miglioramento di risultati esistenti; abilità di integrare conoscenze in campi diversi.		
METODI DIDATTICI	Lezioni frontali con proiezione di trasparenze.		
MODALITA' D'ESAME	Esame orale comprensivo di presentazione con trasparenze su argomenti scelti dal docente		
ALTRE INFORMAZIONI UTILI	Ricevimento: Ma	artedì 11:00-13:00	

PROGRAMMA ESTESO

- *) Particelle, interazioni, principi di base sulla rivelazione di particelle. Nozioni di base sulla cinematica e sui collisori e+e- e adronici.
- *) Interazioni e+e- -> mu+mu-, e+e- a sqrt(s)=mZ, e+e- -> adroni. Risonanze e quarkonia. Ampiezze e rapporti di decadimento dei bosoni W e Z. Fisica nel settore di Higgs. Cenni e prospettive di fisica oltre il Modello Standard.
- *) Proprietà dei principali collisori dagli anni 1960 ad oggi: ADA, Adone, SPEAR, VEPP, CESR, PETRA, ISR, SPS, HERA, LEP, SLC, Tevatron, LHC.
- *) Il collider SpbarpS. Il raffreddamento stocastico. Gli esperimenti UA1 e UA2. Ricostruzione e calibrazione dei jet, scoperta e misura della massa dei bosoni W e Z e loro decadimenti adronici. Sezione d'urto inclusiva dei jet. Misure di QCD e sezione d'urto di produzione di fotoni diretti. Il collider Tevatron e gli esperimenti CDF e DO. Il quark top: scoperta a CDF/DO e misura di massa e sezione d'urto.
- *) Il programma di LEP. Misura della luminosità. Rivelatori agli apparati di LEP. Misure di precisione dei bosoni W e Z: asimmetrie, numero di famiglie di leptoni leggeri. Interazioni adroniche a LEP. Misure nell'ambito del Modello Standard e oltre. Ricerche del bosone di Higgs a LEP.
- *) Fisica e-p: struttura dei nucleoni, asymptotic freedom e ?s. HERA: funzioni di struttura e sezioni d'urto DIS.
- *) Richiami della matrice CKM, sistema dei K e violazione diretta e indiretta di CP. L'acceleratore DAFNE e l'esperimento KLOE. Il sistema dei mesoni B. Gli esperimenti Babar, Belle e LHCb.
- *) Gli esperimenti general-purpose di LHC: ATLAS e CMS. I sistemi di trigger. Misure con jet, btag; Drell-Yan, bosoni W e Z. Misure con heavy flavor, top, triple gauge coupling. Bosone di Higgs: produzione e canali. La scoperta nel 2012. Fisica oltre il Modello Standard: nei settori del top, di nuovi bosoni vettori e della supersimmetria (ricerche inclusive ed esclusive).

TESTI DI RIFERIMENTO

- *) V.D.Barger & R.J.N. Phillips: "Collider Physics"
- *) D.Green: "High Pt Physics at Hadron Colliders"
- *) R.Tenchini & C. Verzegnassi: "The Physics of W and Z Bosons"
- *) M.G.Green, S.L.Lloyd, P.N. Ratoff and D.R.Ward: "Electron- Positron Physics at the Z"
- *) R.K.Ellis, W.J.Stirling and B.R.Webber: "QCD and Collider Physics"
- *) K.J.Peach, L.L.J. Vick: "High Energy Phenomenology"
- *) Dispense e materiale in formato sia digitale sia cartaceo a integrazione dei testi consigliati

